
Sixth Intel EMEA Academic Forum, Istanbul, September 2001 Page 1

 Combining Theory and Practice to Enhance the Effectiveness and
Efficiency of the Software Process

Department of Computer Science, University of Pretoria, Pretoria 0002

Derrick G Kourie
dkourie@cs.up.ac.za

1. Introduction

Although I offered to present a talk on some other research topic at this forum, the organizer
invited me to speak instead about a phrase that he had diligently lifted off my web page:
“Combining Theory and Practice to Enhance the Efficiency and Effectiveness of the Software
Process.” His request was based on feedback from last year, indicating that university talks at
this forum should try to address “concepts, strategic ideas, plans for the future, etc.” The web
page phrase, which is now also the title of this talk, was intended to describe a core concern in my
personal academic life. Since I will often refer to the title, I will take the liberty of contracting it
to the rather capricious acronym CTPEEESP.

Thus, rather than present a specific instance of CTPEEESP – which was my initial
intention – my brief is to talk about the title at a meta-level. At first glance, this seemed akin to
being asked to talk about the benefits of brushing one’s teeth! Why make a high-level case for
CTPEEESP when there seems to be universal agreement that it is a good thing? Surely everyone
thinks that theory and practice should be combined. And who could be against enhancing the
effectiveness and efficiency of the software process?

It is only upon deeper reflection that one becomes aware that there is in fact a whole
spectrum of interpretations, intentions, passions and loyalties towards CTPEEESP. Within both
industry and academia, people think differently about the matter, even while giving notional
ascent to the same words. I therefore propose a categorization of various groupings, firstly within
academia and then within industry. Against the background of the political playing field implied
by this diversity of mind sets, I will put forward a number of propositions that, I believe, can
potentially advance the cause of CTPEEESP.

2. Academic Stereotypes

Before describing a few academic stereotypes, I make two observations. The first is that these are
mere caricatures. They may or may not correspond to real people whom you know. Perhaps, like
me, some of you will confess to finding little bits of each caricature within yourself. The second
is that while I give a computer science perspective, I acknowledge that research into the software
process should be multidimensional and multidisciplinary. Many of the human and management
sciences can and should contribute to the field.

The Closet Mathematician

The first breed of computer scientist to be considered is best described as a closet mathematician.
Highly intelligent and academically successful, the breed’s comfort zone is in the world of
theorems and proofs, mathematical squiggles and formulae. Its members seek out an international
community of likeminded peers and publish voluminously in write-only journals. They are valued
within universities for their rate of publication and modest resource needs. All they require to
function optimally is an office, a PC, pen and paper. Many within the “formal methods” (FM)
community are closet mathematicians. In a recent interchange on the mailing list of FME (Formal

Sixth Intel EMEA Academic Forum, Istanbul, September 2001 Page 2

Methods Europe), a young participant characterized members of the breed as “grandfathers” in
the following terms:

“The presentations [at an FM conference] of the old professors left the impression
that those guys probably have not programmed more than 100 lines of code in
their whole life. They presented, for example, algebraic representations of logic
programs and discussed the question [of whether] one syntax should have one
semantics or [whether] one syntax may have several semantics for several
purposes - very esoteric in my opinion.”

However, being secure in a mystical belief that at some indeterminate time in the future the true
practical value of their theorems may become apparent, they have no real concern for combining
theory and practice. Neither do they have much concern for minimizing effort or maximizing
efficiency, being inclined to equate ease of use with superficiality – i.e. unworthy research.

The Niche Researcher

Many academics find their success in a particular research niche in some or other domain: HCI,
networking, security, graphics, etc. The research invariably involves the development of
prototype systems to test ideas. Often they find financial support for their research from national
funding organizations. The best are supported by industry in venture-research undertakings.

But the salient fact about niche researchers is that they are not primarily oriented towards
producing industrial strength software. Once a prototype has illuminated or verified a research
idea, it may be discarded. As a result, the niche researcher generally does not have strong views
about what should be done to enhance the effectiveness and efficiency of the software process,
(unless, of course, that is the specific research niche). Those who are modest recognize that the
research software process is inherently different from processes that are appropriate in the
software industry. Although they will concede that there is a need for CTPEEESP they will, at
best, be supporters of the cause, but not crusaders.

The Gnostic

Closet mathematicians or niche researchers sometimes become so impressed by their own
research achievements, that they evolve into Gnostics: the ones upon whom great wisdom has
descended from above in all matters related to IT in general, and in relation to the requirements of
the software process in particular. Because their academic environment has recognized them as
good IT researchers, their associated software must obviously be good. The programming-in-the-
large required by industry is seen as nothing more than a whole lot of programming-in-the-small
exercises, which is their terrain of familiarity. Industry concerns for requirements solicitation
methods, for controlled phased iterative incremental development, for documentation and
management procedures, for systematic coding methodologies and standards, for version control,
etc – these are all rather tiresome and trivial non-issues. Software engineering is simply what
computer scientists and engineers get to do once they graduate. Practical execution of the
software process in an effective and efficient manner comes naturally once you have a good
grounding in the basics of programming.

 The Introverted Voyeur

Standing in contrast to the Gnostic is the young introverted voyeur. Spurred by a brilliant student
career, he has been seduced into joining an academic department. His programming-in-the-large
experience is limited to the projects assigned to him as a student. Although he has heard of the
software crisis, he has little notion of the real issues. Instead, he has been diverted into doing
niche research – even doing it well in the eyes of his peers. But he finds himself spending more
and more time surreptitiously peering through the windows of his ivory tower into the windows

Sixth Intel EMEA Academic Forum, Istanbul, September 2001 Page 3

of his industry neighbours. For this sad individual, everything on the other side takes on the hue
of being better and more glamorous. While he tinkers in his own little research corner, he
imagines that all the important things are really happening out there in industry. They have all the
money, they have all the wisdom and they are having all the fun. His inner conviction is that his
theory world and the glamorous world of software practice cannot meet. Perhaps one day when
he grows up and gains sufficient self -confidence, he might join in the fun on the other side.

The True Believer

Finally, there are the true believers. They have had the good fortune of being exposed to the
software process in an industrial context, but have not succumbed to the lure of industry
remuneration. Not surprisingly, there are not many in this category. But because they have either
worked in industry or acted as academic consultants to industry, they have been forced to trim
their sails close to the concerns of industry. They have become keenly aware that the theory that
they teach and the things that they research are ultimately only meaningful within the context of
some practical software process. They try to inculcate into their students a value system that
deeply appreciates and adheres to sound software engineering principles and practice. Their
intellectual instincts are to look for bridges between theory and practice. But, as a result of
devoting energy to engaging industry, they tend to have less impressive research records than
their peers. This weakens their academic credibility and consigns their concern about software
engineering issues to a lower priority within academic curricula.

The foregoing was a non-exhaustive but representative set of dispositions within academia
towards CTPEEESP. Although there are no doubt local and regional dominances, I suspect that
the mix will be found across the globe in most computer science departments, if not in other IT
departments as well.

3. IT Business Stereotypes

I can give no more than an outside and tentative view of IT business stereotypes. It seems to me
that there are two broad philosophical approaches. Let us call their adherents the cavalier
profiteers and the cautious paranoids respectively.

The Cavalier Profiteer

The cavalier profiteer sees profit as an end in itself. He takes a short-term view of the world. The
horizon is a web year. Efficiency is key. Software is to be delivered as rapidly as possible, even at
the risk of severely testing customer tolerance. Like Mao Tse Tung, he believes in creating crises
to advance productivity. This he does by committing to unrealistic thumb-sucked schedules. He
then hires energetic young wiz kids who, in short edit-compile-test cycles, furiously engage in
heroic ad hoc programming, clicking at mice and clacking at keyboards into the early morning
hours. Immature products are submitted for beta testing and bug fixes are postponed to the next
version. There is no time for academic niceties and speculative thought about the software
process. Agile programming (á la Beck, Cockburn and co.) is just fine. Documentation is, at best,
a nice-to-have; at worst, a waste of time. With dollar signs in his eyes, he believes that one day,
he will strike gold. He will corner and capture the market. He will set his own standards. He will
grow up to be like Bill Gates. For now, pragmatism is the name of the game. And then, his team
of wiz kid Xtreme programmers unexpectedly leaves for greener pastures. But they do not leave
behind any documentation, and another dot bomb explodes!

The Cautious Paranoid

We have it on good authority that only the paranoid survive. Perhaps our intrepid and cavalier
profiteer may survive by growing into a cautious paranoid. He comes to believe that the business

Sixth Intel EMEA Academic Forum, Istanbul, September 2001 Page 4

of business is to remain in business. Profits and efficiencies are no longer viewed as ends in
themselves, but as means to the end of surviving. Because he becomes paranoid about sudden
staff resignations, he insists on documentation and standards in support of maintainability.
Because he fears customer disapproval, he puts a high premium on supplying quality bug-free
software, even if that means being a little later to market. Concerned to keep uncertainties about
the future to a minimum, he focuses more energy on the earlier phases of the software life cycle.
Fearful about losing out to competitors, he takes cognizance of his ISO9001 status, his CMM
level, etc.

4. Implications

We started off by observing that most people give notional ascent to the claim that CTPEEESP is
a good thing. We now see that there are many different dispositions towards it, both within
industry and within academia. In our stereotyped scenario, only the true believers and cautious
paranoids practice and promote CTPEEESP with any degree of fervour. The disposition of others
varies from indifference to tolerance. For many, it is not a foreground issue. Against this canvas
of diverse role players, I offer the following thoughts.

a) The IT graduates represent the focal point at which theory and practice are in fact combined.
It is they who take away many little pieces of theoretical knowledge and apply them, perhaps
even subconsciously, when they enter industry. But their training rewards them for solving
problems. Very little emphasis is placed on the way in which the problem is solved. At best,
such methodological issues are touched upon within the confines of isolated courses bearing
titles such as Software Engineering, Object Oriented Analysis and Design, or Software
Development.

b) As a result, not enough IT graduates are imbued with a sense of urgency about the need for
methodological rigour, the need for adhering to standards, the need for a disciplined and
systematic phased approach to developing software. Few are able to connect the formal
method theory taught to them by the closet mathematician, with the software process that
they are required to implement in industry. Many inherit the lukewarm disposition of the
niche-researcher, or the misplaced know-it-all attitude of their Gnostic teachers. As a result,
new employees only adhere to the rigours of a software process because of cautious paranoid
management pressure from above ? not from inner conviction.

c) It is one thing to debate whether computer science and software engineering are one and the
same or whether they are separate disciplines belonging in two different academic
departments. It is quite another thing to observe that, as a matter of fact, large numbers of IT
graduates end up engineering software, irrespective of whether their training was in computer
science, software engineering, computer engineering or even electronic engineering. It thus
behoves us to inculcate software engineering values and practices into all IT curricula.

d) It is in the interests of those in industry who place a high premium on CTPEEESP to support
true believers in academia. The support should not only be financial, but moral as well. They
should recognize that true believers are often locked in internal political struggles ? both
horizontally with peer academics and vertically with superiors. The horizontal struggle has to
do with influencing curricula in the face of indifference, skepticism or downright opposition
from colleagues. Vertical battles relate to the tendency of academic authorities to discount the
value of practical experience when considering appointments and promotions.

e) It is also in the long term interest of the cautious paranoid not only that the hemorrhaging of
IT academics into industry be stemmed, but that it in fact be reversed. In order for
CTPEEESP to flourish, universities require a critical mass of IT academics with deep

Sixth Intel EMEA Academic Forum, Istanbul, September 2001 Page 5

experiential roots in industry. Currently, this is almost impossible, not merely because of the
widely acknowledged salary differentiation, but also because of the aforementioned
discounting of industrial experience. There are some in industry would seriously consider a
switch to academia, despite an inevitable reduction in income. They have the right paper
qualifications, the ability and enthusiasm to teach and to do research and they have a wealth
of valuable practical experience. But they balk at the reduction in their status from ‘being
somebody’ in industry to being ‘a nobody’ in academia, merely because they do not have a
long list of journal publications.

f) There are many concrete ways in which practical experience can be injected into universities.
For example:

o Industry could facilitate schemes whereby academics take sabbaticals in industry. This
seems a relatively cheap and effective way of combining theory and practice. A
stumbling block is, of course, the previously mentioned tendency of academic authorities
to promote staff on the basis of research metrics rather than experience in the field. High-
level industry lobbying to dent this tendency (for example at the CEO-to-University
principle level) would, I believe, be both appropriate and effective.

o There are some in industry who are willing and able to competently present courses at
universities. They should be encouraged by management to do so. They should be given
the necessary time off, not only to present the lectures, but to design the course, to
prepare the classes and, most importantly, to do the necessary assessment. This is very
different from the ‘evangelical’ talks (about the company, its latest products, its
assessment of future trends, etc.) that companies are wont to present to university
audiences. The former is a long term commitment to transfer values and skills, while the
latter is essentially a short-term marketing exercise.

o Where industry elects to fund universities, it could subtly or explicitly make its donations
contingent on things happening that will advance CTPEEESP. For example, a chair in IT
could be endowed under the specific condition that its occupant should have appropriate
industrial experience.

g) Clearly theory and practice are combined when industry engages academics in specific
research projects or discussion forums such as the present. Bringing together the two cultures
has an inevitable and mutually beneficial rub-off effect. However, I believe that many
opportunities for fruitful interchange and research remain unexploited. In particular, with
some notable exceptions in such institutions such as Maryland, there does not seem to be very
much collaboration in conducting software engineering experiments. It should be borne in
mind that academics have access to a pool of students who can be used in all sorts of
experimental trials to test the efficiency and effectiveness of various competing approaches to
developing software.

5. Conclusions

This talk could have focused on past, current and future examples of how theory and practice
combine to enhance the effectiveness and efficiency of the software process. Instead, I have
chosen to focus on a prior concern: conflicting value systems within the academic and business
milieu that hinder the desired osmosis between theory and practice. I have suggested a few
possible strategies to advance the cause.

I conclude by sharing two contrasting scenarios. The first is of a video-clip I saw recently
during a talk by a Microsoft evangelist. Narrated over a sound background of pulsating modern
stereo music, the video takes one through a typical day in the Microsoft software development

Sixth Intel EMEA Academic Forum, Istanbul, September 2001 Page 6

rooms. Angled scenes of trendy twenty-somethings flash by in rapid succession. Rooms are
brimful of high-tech equipment; there is animated discussion and furious coding. Everyone is
focused on completing the day’s code revisions. These are incorporated into a vast software
system that does automated builds and tests. By the next morning, a comprehensive bug report is
available, which determines the agenda for the next day’s activities. The intention of the video
clip is clearly to convey a sense of dynamism, energy and dedication to tracing and removing
bugs.

 In contrast, imagine a quiet room - light and sparsely furnished in minimalist style. Its
many windows look out onto a well-kept garden. A simple wooden table and chair is in front of
each window and a PC rests upon each table. On the floor opposite each PC, a shaven saffron-
robed monk sits silently in a lotus position and contemplates the blank space before him. Then, at
mid-day, the monks rise in unison, bow to each other, seat themselves at the PCs and calmly write
code according to clearly documented specifications. At the end of the day, they bow and return
to their quarters, confident of steady progress towards a targeted software system that contains no
bugs.

This last vignette is purely fictional. It comes from a book that exists as a mere fantasy in
my head and will probably remain so. A possible title is “Zen and the Art of Software
Engineering”. It is based on the thesis that the effectiveness and efficiency of a software process
is determined by the core values of its participants, most particularly, by their disposition towards
bugs. Some regard bugs as an unfortunate but inevitable fact of life: “Everyone makes mistakes.
Let’s not get too uptight or unrealistic.” Such tolerant pragmatists will tend towards a software
process similar to the Microsoft scenario: the energy is focused on frenetic ex post facto repair.
But to the extent that one is idealistically committed to the complete avoidance of bugs and
develops a puritanical abhorrence of them – to that extent energy shifts towards thoughtfully,
calmly and methodically purging them from the system ab initio. The challenge facing the true
believer and the cautious paranoid is no less than this: a missionary task to influence the core
value systems of key role players in the latter direction.

