
In Search of the Sweet Spot: Agile Open Collaborative Corporate

Software Development

W.H. MORKEL THEUNISSEN, ANDREW BOAKE AND DERRICK G. KOURIE

University of Pretoria

Corporate software developers are faced with many difficulties. Development windows are decreasing; scale and complexity are

increasing; business requirements are vague and changing; and the underlying technology moves ever on. Agile methods have

emerged as leading contenders to tame these challenges. Small teams, face-to-face communication, an emphasis on simplicity and
a selection of development best practices contribute to software development which is relevant, yet fast and flexible. At the same

time, Open Source Software is increasingly providing infrastructure, tools and components to companies. Progressive development

teams are beginning to work in more open, collaborative, and distributed ways. In some respects these practices are similar to
agile practices, but in important ways, very different. Yet, both are important and offer unique benefits. This paper discusses the

prospects of combining the two in the context of corporate software development, and the approach we suggest to do this.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—Software process models

General Terms: Management

Additional Key Words and Phrases: Agile Software Development, Hybrid, Open Source Software Development, Software Process

Engineering Metamodel, Corporate, Progressive Open Source

1. INTRODUCTION

The past decade has seen the emergence of two “new” software development paradigms. On the one hand, the
rise and acceptance of agile approaches has been witnessed in commercial software development; on the other
hand, the use of open source software (OSS) as reliable enterprise solutions has increased substantially. The
adoption of OSS by commercial Information and Communication Technology (ICT) players has even lead to the
evolution of associated OSS development (OSSD) practices and culture traits within these companies.

As such, software development managers would be well-advised to evaluate these two paradigms and to con-
sider their influence on their individual environments and circumstances. However this evaluation is further
complicated by the debate on whether OSSD is just another agile approach or not [Warsta and Abrahamsson
2003; Raymond 2003b]. The authors contributed to this debate in [Theunissen et al. 2005], concluding that the
general OSSD approach does not comply with the Agile Software Development (ASD) definition, as set out in the
Agile Manifesto [Agile Manifesto URL]. Consequently, a software development manager needs to decide which
– if any – of these approaches to follow. An alternative solution is however raised and explored in [Theunissen
et al. 2005]: that of a hybrid approach. The present paper sets out to extend this notion of a hybrid process in an
attempt to find the sweet spot towards an agile open collaborative corporate1 software development approach.

Note that, as with any proposed solution to the general problem of software development, it would be precip-
itous to claim that the solution is a silver bullet [Brooks 1995]. Instead, the paper’s goal is to provide comments
on the processes one needs to consider, and thus to facilitate decisions on the appropriate approach for one’s
circumstances.

Section 2 will sketch issues currently relevant to corporate software development. After establishing the

1In this paper we will use the term corporate to refer to medium to large enterprises that have their own in-house software developers

Authors Address:

WHM Theunissen, Espresso Research Group, Department of Computer Science, School of Information Technology, University of
Pretoria, Pretoria, 0002, South Africa; mtheunis@cs.up.ac.za
A Boake, Espresso Research Group, Department of Computer Science, School of Information Technology, University of Pretoria,

Pretoria, 0002, South Africa; andrew.boake@up.ac.za
DG Kourie, Espresso Research Group, Department of Computer Science, School of Information Technology, University of Pretoria,
Pretoria, 0002, South Africa; dkourie@cs.up.ac.za

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

the copies are not made or distributed for profit or commercial advantage, that the copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than SAICSIT or the ACM must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee.
c© 2005 SAICSIT

Proceedings of SAICSIT 2005, Pages 268–277



In Search of the Sweet Spot: Agile Open Collaborative Corporate Software Development • 269

software development needs of corporates we will briefly describe how ASD (Section 3) and OSS (Section 4) have
emerged to address certain aspects of these needs. HP’s Progressive Open Source model is briefly described in
Section 5 as an example of how OSSD may be applied in corporates. Section 6 will introduce the possibility of
forging these two separate approaches together in the hope of attaining a hybrid approach to maximise on the
benefits that each provides. The section will also highlight some of the difficulties associated with bridging these
approaches. Section 7 builds on the notion of a hybrid process by introducing the approach we are following to
define and evaluate it. To conclude, a summary of the findings of this paper are presented in Section 8.

2. CURRENT SOFTWARE DEVELOPMENT DRIVERS IN CORPORATES

Although it would be hard to definitively and comprehensively enunciate all factors currently driving corporate
software development, few would differ with the assertion that the following list is representative of some of the
most important factors:

—The increasing size and complexity of systems

—The pressure to decrease development windows (‘Internet time’)

—The rapid technological changes

—The need to accommodate changing business needs in the requirements

—The fact that software is driving business’ competitive advantage

—The need and will to rely on standardisation to achieve a measure of flexibility

—The aspiration to maximise reuse whether through component based development, integration with legacy
systems and service oriented architecture (SOA)

—The emergence of ubiquitous computing where solutions may span multiple platforms (servers, desktops, PDAs,
cellphones)

Both ASD and OSS/OSSD address a number of these factors, as will be discussed in the following two sections.

3. AGILE SOFTWARE DEVELOPMENT

During the mid 1990s, a number of software development project managers and consultants realised that the
traditional software development approaches were not able to adequately address the types of projects that
were emerging during the Internet era. To address the problem, they proposed various so-called ‘light-weight’
methodologies. Included in these methodologies is Extreme Programming (XP) [Beck 2000], Feature Driven
Development (FDD) [Coad and De Luca 1999], The Crystal Family [Cockburn 2002], Pragmatic Programming
[Hunt and Thomas 1999], Dynamic Systems Development Method (DSDM) [DSDM URL] and SCRUM [Schwaber
1995].

In February 2001 proponents of these different ‘light-weight’ methodologies’ met to investigate the possibility
formulating a common set of principles to characterise these otherwise diverse approaches. This meeting found
common ground between the represented methodologies and resulted in the formation of the Agile Alliance
[Agile Alliance Homepage] and the declaration of the Agile Manifesto [Agile Manifesto URL], the latter outlining
common principles of these so-called agile methodologies [Highsmith].

The Agile Alliance holds communication, simplicity and best practices (with a people-oriented emphasis instead
of a process-oriented one) in high regard, and enunciate this in the Agile Manifesto’s in terms of a list of values
as follows:

“Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan” [Agile Manifesto URL].

Since the formation of the Agile Alliance, the adoption of agile approaches by software developers has increased
dramatically, which testifies to the viability of these methodologies. It also suggests that these approaches address
many of the current software development needs, in particular: the need to develop at ‘Internet time’, to exploit
opportunities offered by rapid technological changes, and to have the capability of dealing with changing business
requirements.

In contrast, the potential vulnerability inherent in an ASD project is its dependence on group tacit knowledge
and group face-to-face communication. Consequently the argument may be raised that if such a project was
temporarily suspended it might be difficult to re-initiate and/or maintain it.

Proceedings of SAICSIT 2005



270 • Theunissen, Boake, and Kourie

4. OPEN SOURCE SOFTWARE

During the 1960s and 1970s, the programmers of the day freely exchanged code. This sharing culture came to be
seen as a threat to companies who were trying to exploit the commercial value of these programs. As a result,
during the 1980s, companies started to clamp down on the code sharing culture by enforcing the use of proprietary
licenses. This commercialisation of software and consequent erosion of the code sharing culture gave rise to the
GNU Not Unix (GNU2) initiative by Stallman. The GNU initiative grew into the Free Software Foundation
(FSF) with its definition of Free Software [Free Software Foundation] and other ideological standpoints, including
the GNU General Public License (GPL) [Free Software Foundation]. (Note that the ‘free’ in free software denoted
here, refers to the liberty of software and not to the cost associated with the software.)

As the Advanced Research Projects Agency Network (ARPANET) matured, the increased utilisation of an
open architecture ensued [Raymond 2003a; Moody 2002]. Furthermore, the de facto standards that formed the
core of services on the network were built on free software. These services included the Domain Name System
(DNS) provided by Berkeley Internet Name Domain (BIND); e-mail services enabled by Sendmail; web content
provisioning services provided by the National Center for Supercomputing Applications’ (NCSA) HTTPd3 server
(which became Apache) which in turn was based on the – publicly available – hypertext system developed by
Berners-Lee [Moody 2002]. When ARPANET became the Internet and was adopted for commercial use, all these
free software solutions were drawn into the corporate limelight as businesses extended their presence onto the
Internet.

The increased use of the Internet during the 1990’s ushered in a new era for the culture of the OSS movement.
Not only did the Internet enable a new generation of developers to collaborate and share code in a distributed
fashion at a negligible cost, but it also saw the birth of the free and open source operating system, Linux. Linux,
and the development culture surrounding it, has caused a revolution in the ICT market and its underlying
software development approaches. Not only did it provide a platform on which to host services at a fraction of
the acquisition cost of the traditional UNIX solutions, it also brought the OSSD culture into large corporations.
This came about through a progression: from using OSS solutions to building internal infrastructure at low cost
such as print-,file- and intranet web servers; to customising these solutions by providing features that empower
the administrator and support for a wider range hardware; and finally, to contributing these changes back into
the community. The using and customising activies fuelled each other to further support the OSS paradigm,
which naturally spread further into other areas of the company. Similarly, the developers were increasingly using,
adopting and contributing to OSS tools that aided them in development.

As more and more corporates started to become interested in this free software, the need to remove the
misconception associated with the term “free” was realised. A group of free software proponents formed the
Open Source Initiative (OSI) [OSI Homepage] which adopted the Open Source Definition (OSD) [The Open
Source Initiative].

Examples of the impact that OSS has had on commercial ICT players include:

—Netscape releasing its browser’s source code as the Mozilla project [Cusumano and Yoffie 2000; Moody 2002].

—IBM’s adoption of Apache in preference to its own Domino web server [Moody 2002].

—HP creating and adopting the Progressive Open Source (POS) approach to software development [Dinkelacker
et al. 2001; Fink 2003].

—Sun’s move towards an open source culture with the release of OpenSolaris 4 [OpenSolaris Project] and using a
community development approach for their Java Development Kit 6.0 (JDK 6.0 codenamed Mustang) 5 [J2SE
6.0 Project].

The aforementioned paragraphs have briefly highlighted the history and trends with regard to Free/Libre/Open
Source Software (FLOSS)6. The following paragraphs will illuminate the importance of OSS and OSSD for
corporates.

The first matter to consider is that OSS/OSSD supports reuse. Software development best practices dictate
that one should reuse as extensively as possible. Not only will this allow one to focus on the specialisation and
uniqueness of the solution, it should also reduces the development time.

2A recursive acronym that is a common pun in the OSS culture.
3HTTPd is an acronym for HyperText Transport Protocol daemon
4Will be released in 2005 under the OSI-approved Common Development and Distribution License (CDDL) Version 1.0
5Released under the Java Research License (JRL) which is not OSI approved.
6A hybrid term to encompass both Free (also know as Libre) and Open Source Software

Proceedings of SAICSIT 2005



In Search of the Sweet Spot: Agile Open Collaborative Corporate Software Development • 271

Another potential benefit of OSSD is the availability of a larger developer base, extending beyond the human
resource capabilities of a company. When following an OSSD approach, a related human resource benefit is the
ability to maximise on the skills available from in-house developers, irrespective of their geographical location.
This reduces the need to co-locate all the software developers at a geographically central place. An example would
be where a project requires, for example, an assembly language specialist as well as a multimedia developer: the
assembler specialist could be located at the company’s branch on one continent whereas the multimedia team
could be located on another. Traditionally this scenario would have demanded that one of the developers would
have to move to the other developer’s location, or alternatively, the company would be forced to hire an additional
developer – with the needed skillset – at the project’s geographical location. Within an OSSD environment the
need for co-located development is removed because of its inherent distributed characteristic. Furthermore it
opens the door to the use of contractors in a just-in-time (JIT) fashion.

OSS may also be used as a strategic ‘weapon’ for a company/organisation to gain a dominant market share of
a specific technology. An example is JBoss using the OSS characteristic of its J2EE Web Application solution
to try to become the preferred option for an installation and development base.

There are, of course, several disadvantages to OSSD. For example, the complex social structure may inhibit
participation. Its virtual nature is sometimes experienced as impersonal. Although OSSD’s disadvantages will
not be addressed in more detail in this paper, some may well be ameliorated by the approach that we advocate.

5. HP’S PROGRESSIVE OPEN SOURCE

Hewlette-Packard (HP), having observed the prospering OSS projects such as Linux and Apache, decided to
investigate the OSSD model. Out of its study evolved the Progressive Open Source (POS) “software engineering
paradigm for large corporations” [Dinkelacker et al. 2001]. Dinkelacker et al. [2001] describes this approach in
more detail and Fink [2003] places it in the larger HP strategic context. Here, we present no more than a very
brief overview of its main concepts.

As implied by its name, the POS approach seeks to “leverage the power of Open Source Software methods
and tools for large corporations in a progressive manner: starting from completely within the corporation, to
include partner businesses, and eventually complete Open Source.”

It is a software engineering paradigm that is based on a three-tiered model for software development. These
tiers are: inner source, controlled source, and open source. The tiers reflect the level of exposure, visibility
and access control associated with a project. To adopt the model in a company means to ensure that company
developers (or at least the majority of developers) follow an OSSD approach. The inner source tier refers to
projects that are restricted to company developers only. Controlled source denotes the extension of the project’s
access to include selected corporate partners. The final tier indicates that a full open source project is being
conducted – i.e. one that is open to the global community of developers.

The benefits of POS as stated by Dinkelacker et al. [2001] include:

—Utilisation of a larger developer base

—Utilisation of previously inaccessible skills

—Rapid team re-deployment

—Potential for partner involvement, thus an even greater developer base

Even though the idea of POS development holds promise, the truth of the matter is that adopting the POS
approach in a company presents a number of challenges. These matters will not be dealt with in detail here.
For further information, refer to Dinkelacker et al. [2001], who acknowledges the problems and classifies them in
terms of organisational and technological infrastructure problems.

A final point worth mentioning is that the authors of the POS concept were aware that, if a company is to
adopt OSSD, a paradigm shift in its views of its software products will be required. In the OSS paradigm,
the end-product to be pursued is source code, as opposed to a binary artifact that is the end goal in the
proprietary/traditional context [Dinkelacker et al. 2001; Fink 2003]. When presented with a binary deliverable,
the customer has a very limited insight into the product and can only judge the end result. However, the fact
that the customer has access to the source code, exposes the company to customer evaluation at an entirely
different level. As a result, matters such as having well-documented code that is readable and that is based on
an understandable architecture, increase in importance, since these too can be seen and judged by customers.

6. OSS AND ASD AS SOURCES OF TENSION

The current state of play is therefore the following: Firstly, it is recognised that most companies still follow
traditional software development methodologies. Secondly, the one hand, the POS approach as described in

Proceedings of SAICSIT 2005



272 • Theunissen, Boake, and Kourie

[Dinkelacker et al. 2001] appears to have advantages for such companies, and there are many contemporary
pressures nudging companies in that direction. Thirdly, as reported in Section 3, an increasing number of
companies are either exploring or applying ASD. The question naturally arises: can these two development
approaches, ASD and OSSD, be reconciled — much in the same way in which POS has reconciled OSSD and
‘traditional’ software development. For this reason the paper sets out to explore the possibility of applying

OSSD in an agile environment.
A number of studies [Raymond 2003b; Warsta and Abrahamsson 2003] have put forward the notion that

OSSD is simply another instance of ASD. On the surface, this might seem to be the case, especially if one
were to observe a typical team that is following one of these agile approaches. Members are inclined to pride
themselves on their ability to use OSS tools and libraries – thereby maximising reuse (one of the creeds of ASD)
in the process. Furthermore, these individuals will invariably support and promote the OSSD culture. However,
these ASD teams seldom produce OSS solutions. To do so would be to move beyond the ASD focus, which is
aimed at rapid delivery to a specific customer.

In Theunissen et al. [2005], it is argued that OSSD is not simply another ASD instance, and that the two
approaches in fact have distinct underlying principles. These conclusions are arrived at by evaluating the extent
to which the agile principles (listed in the agile manifesto [Agile Manifesto URL]) are manifested in the generalised
OSSD approach used by the prominent OSS projects and described in the literature [Feller and Fitzgerald 2002;
Raymond 1998].

Does this then mean that OSSD and ASD are mutually exclusive, or is it possible to find a creative synergy
between the two approaches? This question requires a two-phase answer. In the first place, the tension points
generated by the two approaches need to be identified. This was done in [Theunissen et al. 2005] and is sum-
marised in Subsections 6.1 and 6.2. In the light of these tensions, the second phase of the question is answered
in Section 7. That section proposes a hybrid approach that explicitly takes account of the identified tensions.

6.1 Tensions between OSS and Corporate Culture

The corporate environment places certain requirements on the software development process to enforce ac-
countability from employees. As highlighted below, these requirements often conflict with practices that OSS
developers take for granted.

—Monitoring of developers.
In an environment where remuneration for work is the norm, there is a need to manage and monitor employees.
Traditional OSS projects have not been subjected to this, due to the voluntary nature of the development.
However, in the corporate paradigm, when a manager assigns tasks to her subordinates she would like to be
able to track their progress and their activities for resource balancing purposes. This scenario can become
even more complicated when an OSS development style is used internally. Monitoring which developers are
contributing to different and disjoint OSS efforts is difficult. Furthermore, it may be difficult for management
to assess the importance or relevance of an OSS contribution that is not directly used by the organisation.
Notwithstanding the traditional OSS value system, a manager has to ensure that developers complete essential
tasks, instead of working on random OSS-associated tasks that the developers regard as interesting or fun.

—Fixed time schedules.
Traditional OSS projects live by the principle of “release often”, but these releases are largely ad hoc, occurring
whenever the core maintainers feel that it is time to do a release. By contrast, within the corporate environment
there is a need to link different software development projects to fixed time frames so as to account for cash
flow, Return-On-Investment (ROI), etc. This also reduces the volatility associated with deploying solutions.

—Quality Assurance Processes.
OSS by its very nature allows for extensive peer review. One of the underlying concepts of OSS is the so-
called “Linus’ Law” that states: “Given enough eyeballs, all bugs are shallow.” [Raymond 1998]. However,
although some OSS projects may apply certain rules prior to accepting contributions (patches), there are no
formal OSS code review processes (in particular between the core members). In contrast, in both the agile
paradigm, and in many other traditional software engineering approaches, code review procedures are adhered
to more diligently. In fact, company code reviews may be seen as an extension of the ‘monitoring of developers’
requirement discussed above.

6.2 Tension between Agile and OSS development

Just as OSS development will need to accommodate a corporate development style, so also may agile developers
within corporate institutions need to adapt to certain OSS practices that are not completely aligned with purist
agile principles. This subsection highlights some of the potential adjustments that might be needed.

Proceedings of SAICSIT 2005



In Search of the Sweet Spot: Agile Open Collaborative Corporate Software Development • 273

—Adapting to remote communication.
From the agile perspective, accommodating a different way of communicating between developers would ar-
guably be the most challenging adjustment imposed by the introduction of an OSS culture. As stated before,
the agile approach depends extensively on face-to-face verbal communication between members and the avail-
ability of on-site customers. This is not the case in a typical OSS development context. Furthermore, the
daily routine of an agile team is usually rigorously controlled. Typically, an agile team starts the day off
with a short stand-up meeting, followed by a three to four hour focused session of uninterrupted development.
They may then break for lunch, followed by another focused session in the afternoon. During these focused
sessions, the developers are typically prohibited from using telephones, e-mail, IRC or any form of external
communication, both inbound and outbound. In contrast the OSS development style often requires frequent
access to communication media such as e-mail, IRC and the Web. These media, which facilitate 24/7 flow of
information will appear as extremely ‘noisy’ to developers accustomed to the agile style.

—Managing internal and external communication.
An added problem is the need to translate and transmit the verbal communication between co-located de-
velopers to other distributed external developers. This totally opposite mode of communicating information
between developers may prove to be a severe obstacle in the quest for synergy.

—Relinquishing control.
Agile developers are accustomed to having a large say in the decision making processes that control the
direction of a project and the development style and culture within the project. However, when the team is
simply yet another contributor in a larger community of developers, some of this control over many aspects
of the project will be lost. This could be a disturbing prospect for these developers and should be taken into
account when the team interacts with the OSS community.

—Delivery schedules.
The view on time schedules is associated with the control issue. Agile proponents advocate fixed, (though
short) time cycles to illustrate their progress to the client and to verify the appropriateness of the evolving
system. Although the OSS culture is also to deliver frequently, the inclination is to only deliver when the
deliverables are useful and stable.

—Good citizenship.
Agile developers need to realise that they are no longer the centre-point of the development effort. Instead,
in an OSSD context, they become part of a larger community of developers with a deeply rooted culture that
has been around for a number of decades. Agile developers will therefore have to gain an understanding of
the OSS culture to ensure that they adhere to the underlying, sometimes unwritten, rules when participating
in the OSS community.

In the section to follow, a process is advocated that is a hybrid between ASD and OSSD. Such a process will
clearly need to address these and other ASD/OSSD-generated tension-points.

7. TOWARDS A HYBRID PROCESS

In describing the hybrid process characteristics, we provide below a general description of our overall strategy,
we provide a small illustrative example of one of the work definitions, and we discuss the role of tools in the
hybrid context.

7.1 The Overall Approach

The preceding sections have made mention of traditional corporate software development, as well as the drift
towards both ASD and OSSD. Figure 1 diagrammatically depicts the way in which these various development
styles can come together. At the centre, it shows what we call the ‘sweet spot’: a hybrid process that embodies
the best of ASD and OSSD, that maximally reconciles tension points, and that is suitable for corporate adoption.

It is conceded that such a sweet spot is a somewhat idealised notion that may or may not be fully attainable in
practice. Nevertheless, it seems worthwhile to articulate it in theory, and to strive after it in practical contexts.
It is the long-term goal of the current research project to provide a comprehensive theoretical articulation of such
a sweet spot or hybrid process, to evaluate it, to implement it in practical contexts and to assess its acceptability.
This is clearly an iterative incremental activity. At this point, however, we report on early work undertaken on
this intended trajectory.

Our theoretical articulation of this hybrid process rests on two supporting pillars: the identification of sub-
processes, and the articulation of those subprocesses in an appropriate notation. In regard to the latter, it was

Proceedings of SAICSIT 2005



274 • Theunissen, Boake, and Kourie

������������

	�
��
��������
�����������

���

�������

	�
��
��������
�����

����������������

��������������������

���

	
��
���

	�
��
���
�����������

Figure 1. The hybrid process in relation to corporate, agile and OSS

decided to use the Software Process Engineering Metamodel (SPEM) Specification (version 1.1) [Object Man-
agement Group 2005] as a notational device to define the relevant subprocesses. SPEM is a recognised industry
standard for modeling software engineering processes. It is an Object Management Group (OMG) adopted
specification and is based on the Unified Modeling Language (UML). That it is suitable in the OSSD context,
is illustrated by the work of Lonchamp [2005], where SPEM has been used to model the release management
processes of two well-known OSSD projects: the NetBeans IDE and the Apache HTTP Server projects.

In seeking to identify subprocesses, we take as a fixed-point objective that the overall process being defined
needs to be as agile as possible. At the same time, it is recognised that various corporate contexts may impose
limitations on the degree of agility that is feasible. As a consequence, taking a cue from Cockburn [2002], we
suggest a methodology per project approach. We are therefore engaged in defining a number of Work Definitions7,
which in turn should be selectively combined to produce the appropriate process for a particular project.

7.2 A SPEM Example

As an example, consider the Submit New Feature Patch work definition which has been identified as one sub-
process in the proposed hybrid methodology. This SPEM work definition is given in Figure 2, relying on the
appropriate graphical UML notations as extended by SPEM.

Two Process Roles8 are shown in the figure: the Casual Developer and the Core Developer. For the purposes of
discussion, below we refer to roles as if they represented a single individual. In this case, the casual developer is
seen as an external contributor to the project, while the core developer is one of the project’s core team members.
It is assumed that the core developer has write access to the project repository as well as in-depth knowledge
of the code base, project policies etc. Note that in this work definition, it is assumed that the casual and core
developer are different individuals. There could be numerous variations on this work definition, reflecting various
contexts.

The work definition refers to Documents in five different contexts. The references are as follows:

—Patch indicates the difference between the published code base and the local customisations.

—Issue Tracker: Feature Entry {new}/{closed}/{resolved} refers to different versions of the same document.
This document tracks the progress of the feature throughout the development process.

—Changelog refers to a list of changes to the product, usually categorised by release number.

The Activity9 for this work definition is: Submit Feature Request in terms of which a developer (indicated as
a casual developer in the figure), uses the project’s issue tracker and writes a request for an extension of the
system.

Finally, Submit New Feature Patch contains three other work definitions, each of which require their own
SPEM specification:

7“Work Definition: A Model Element of a process describing the execution, the operations performed, and the transformations

enacted on the Work Products by the roles. Activity, Iteration, Phase, and Lifecycle are kinds of work definition”[Object Management
Group 2005].
8“A Model Element describing the roles, responsibilities and competencies of an individual carrying out Activities within a Process,

and responsible for certain Work Products.”[Object Management Group 2005]
9“A Work Definition describing what a Process Role performs. Activities are the main element of work.”[Object Management Group
2005]

Proceedings of SAICSIT 2005



In Search of the Sweet Spot: Agile Open Collaborative Corporate Software Development • 275

���������	��
���

�
�������������

����������������������

��	�������������������

�����

���������������
��������� ��!�
" ��#

���������������
��������� ��!�
"��
��#

���������������
��������� ��!�
"���
�	�#

��� $��
$

� ��$����

�
�����	��
���

��%��� ������

Figure 2. SPEM Work Definition: Submit New Feature Patch

—Code New Feature defines the process of developing the code. A developer (again indicated as a casual
developer in the figure) may extend the code base to solve the need being experienced.

—Review Feature Request refers to the process whereby the core developer performs a review of the submit-
ted request and its enclosed patch, verifying its applicability to the overall project strategy (or roadmap).
Furthermore the code’s quality and adherence to the project policies are verified.

—Integrate defines the process of integrating new code into the existing code base.

The methodological characteristics of these latter two work definitions are not specified in the figure. Their
later definition may imbue them with agile properties, or any other process characteristics for that matter. In
this example the Submit New Feature Patch work definition closely reflects the process followed in traditional
OSSD. Its hybrid nature (i.e. where ASD and OSSD are combined) is a result of the fact that either Code New
Feature and/or Integrate could be conducted in an ASD fashion.

Proceedings of SAICSIT 2005



276 • Theunissen, Boake, and Kourie

We are currently engaged in specifying numerous work definitions, of which the above is typical. In many cases,
these work definitions relate exclusively to either ASD or OSSD, but are nevertheless applicable to the proposed
hybrid process. There are, however, additional work definitions that are specifically needed in the hybrid process.
For example, management may require work definitions to track the time expenditure of corporate developers
in relation to their involvement in various projects.

7.3 Tools as an Aid to a Hybrid Approach

The hybrid approach would impose new demands on management, and would ideally need to be supported by a
new generation of software tools. Two examples are mentioned below.

One requirement that is prominent in large corporates and often under-emphasised in OSSD, is the need for
upfront design. Even agile approaches engage in a measure of upfront design, albeit in an agile way: for example,
agile modeling and the XP planning game can be construed as upfront design activities. In the hybrid approach,
these agile team decisions, generally made in a face-to-face environment (aided by whiteboard annotations), need
to be communicated to the distributed participants. This should be done as transparently as possible to limit the
burden placed on the developers – thus supporting agility. Tools may aid in this. An example of adding upfront
design capabilities to OSSD tools would be to have an issue-tracker that is able to refer to version-controlled
UML models as part of the requirement specifications.

In line with the POS nature of the hybrid approach, corporate developers are usually afforded the opportunity
to select one or more projects in which they will participate. In these circumstances, it would be useful to
have tools that track a developer’s contribution and time expenditure on disjointed projects. A line manager
(in a matrix organisational hierarchy) will then be able to track the developers being supervised, thus ensuring
that these developers are providing value to the employer. However, the fact that some of these projects might
be “external” could cause complications, since internal tools would not track the employer activities on such
projects. A tool to be used in the hybrid context would need to address this potential complication.

8. CONCLUSION

The current corporate software development environment is continuously being influenced by a wide range
of factors, including technological changes, methodological changes, business requirement changes and trends.
These influence the required speed, agility, complexity and scale of software development. It has been pointed
out that two contemporary software development approaches have increasingly been meeting these challenges.
OSSD in a corporate context was explicitly considered in relation to HP’s POS approach.

Based on the evidence that ASD is well underway in some corporates while OSSD is being used in others,
we raised the idea of combining the two approaches. Though difficulties of finding synergy between these two
approaches were raised, a potential reconciliation through a hybrid approach, containing extensions to both of
the existing processes is suggested.

The use of SPEM to define the proposed hybrid methodology has been proposed, and illustrated by an
appropriate example. As an immediate research agenda, the SPEM definition of this hybrid process is to be
completed, after which the process definition will be evaluated using the Software Process Improvement and
Capability dEtermination (SPICE) standard [SPICE Homepage]. In conjunction with these activities, the role
of tools to support the process is also being investigated.

ACKNOWLEDGMENT

The research presented in this paper are funded through the National Research Foundation (NRF) and the
CeTEIS THRIP grant. This research forms part of the Espresso Research Group’s ongoing activities.

REFERENCES

Agile Alliance Homepage. Homepage for the Agile Alliance. Online. http://www.agilealliance.org – 2005/04/01.

Agile Manifesto URL. Manifesto for Agile Software Development. Online. http://www.agilemanifesto.org – 2003/05/20.

Beck, K. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley.

Brooks, J. 1995. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison-Wesley.

Coad, P. and De Luca, J. 1999. Java Modeling in Color with UML. Prentice Hall.

Cockburn, A. 2002. Agile Software Development. Pearson Education, Inc.

Cusumano, M. and Yoffie, D. 2000. Competing on Internet Time: Lessons from Netscape and its battle with Microsoft. Touchstone.

Dinkelacker, J., Garg, P. K., Miller, R., and Nelson, D. 2001. Progressive open source. Tech. Rep. HPL-2001-233, Hewlette-

Packard Laboratories, Palo Alto. September.

DSDM URL. DSDM Homepage. Online. http://www.dsdm.org – 2003/05/15.

Feller, J. and Fitzgerald, B. 2002. Understanding Open Source Software Development. Pearson Education Limited.

Proceedings of SAICSIT 2005



In Search of the Sweet Spot: Agile Open Collaborative Corporate Software Development • 277

Fink, M. 2003. The Business and Economics of Linux and Open Source. Prentice Hall PTR.

Free Software Foundation. The free software definition. Online. http://www.fsf.org/philosophy/free-sw.html – 2004/10/27.

Free Software Foundation. Gnu general public license. Online. http://www.gnu.org/licenses/gpl.html – 2005/03/24.

Highsmith, J. 2001. History: The Agile Manifesto. http://www.agilemanifesto.org/history.html – 2002/02/01.

Hunt, A. and Thomas, D. 1999. The Pragmatic Programmer. Addison-Wesley.

J2SE 6.0 Project. Project homepage for Mustang (J2SE 6.0). Online. https://mustang.dev.java.net – 2005/04/01.

Lonchamp, J. 2005. Software Process Modeling. The Kluwer International Series in Software Engineering, vol. 10. Springer, Chapter
Chapter 1: Open Source Software Development Process Modeling. Unpublished.

Moody, G. 2002. Rebel Code: Linux and the Open Source Revolution. Penguin Books.

Object Management Group. 2005. Software process engineering metamodel specification. formal 05-01-06, Object Management

Group. January.

OpenSolaris Project. Project homepage for OpenSolaris. Online. http://www.opensolaris.org – 2005/04/01.

OSI Homepage. Homepage for the Open Source Initiative. Online. http://www.opensource.org – 2005/04/01.

Raymond, E. S. 1998. The cathedral and the bazaar. First Monday .

Raymond, E. S. 2003a. The Art of Unix Programming. Addison-Wesley.

Raymond, E. S. 2003b. Discovering the obvious: Hacking and refactoring. http://www.artima.com/weblogs/viewpost.jsp?thread=

5342 – 2004/10/18.

Schwaber, K. 1995. Scrum development process. In OOPLSA’95 Workshop on Business Object Design and Implementation.

SPICE Homepage. Spice: Software process improvement and capability determination. Online. http://www.sqi.gu.edu.au/spice/
– 2005/07/20.

The Open Source Initiative. The open source definition. Online. "http://www.opensource.org/docs/definition.php" –

2004/04/17.

Theunissen, W., Boake, A., and Kourie, D. 2005. Open source and agile software development in corporates: A contradiction or
an opportunity? Jacquard Conference, Zeist, Holland.

Warsta, J. and Abrahamsson, P. 2003. Is open source software development essentially an agile method? In Proceedings of the

3rd Workshop on Open Source Software Engineering, 25th International Conference on Software Engineering. Portland, Oregon,
USA, 143–147.

Proceedings of SAICSIT 2005


