
Refactoring a UML design leads to a new set
of class and statechart diagrams. We provide a
procedure for mapping UML statecharts to
the CSP process algebra. We can then use the
theory of CSP to prove that the external
behaviour of the old and the new design is
equivalent.
In the UML model, the behaviour of every
class must be described by its own statechart.
Further, calling of methods from one class to
another is modelled by call events and
similarly named return events. A statechart
constructed using these constraints can then
be mapped to CSP.

Towards Proving Preservation of Behaviour of
Refactoring of UML Models

Marc van Kempen (marc@bowtie.nl) Michel Chaudron (m.r.v.chaudron@tue.nl
Derrick Kourie (dkourie@cs.up.ac.za) Andrew Boake (andrew.boake@up.ac.za)

Saat

DBCreate DBFill DBCheck

Analyse

StatFilter

Parser

DB

StatCalc

Statistics

After refactoring, both
statecharts are translated
to CSP. Finally the
tracesets for both CSP
systems are compared to
establish equivalence of
behaviour.

Saat

DBCreate

Parser DBFill
DBCheck

Analyse

StatFilter

StatCalc

Class diagram before refactoring
Anti-pattern: God-class -> poor maintainability

Class diagram after refactoring
Balanced design: improved maintainability.

Mapping example of statechart to CSP.

Saat = (cr ! createcrr? x)

Waiting for create

/^DBCreate.create() DBCreate.create_r

Database created

Map Statechart to CSP

/department of mathematics and computer science

Original UML Design:
Class diagrams and statecharts

New UML Design:
Class diagrams and statecharts

Refactoring

Map to CSP

Generate Traceset

Map to CSP

Generate Traceset
Compare Tracesets

Refactoring is the transformation of the internal structure of a software system in a way that improves one or
more of its quality attributes (such as maintainability, performance), but does not alter the system's external
behaviour. Significant gains in development time and effort can be realized if refactoring is used to improve a
system's architecture during the design phase. Our goal is to define a collection of refactorings for UML models
and develop methods for proving that these refactorings preserve the behaviour of the designs.

