Towards Proving Preservation of Behaviour of
Refactoring of UML Models

Marc van Kempeh
Derrick Kouri€?
Michel Chaudrof
Andrew Boaké

Eindhoven University of Technologyar c @owt i e. nl
University of Pretorialkour i e@s. up. ac. za
Eindhoven University of Technology r . v. chaudr on@ ue. nl
University of Pretorimndr ew. boake@ip. ac. za

Abstract. Refactoring of a design before updating and modifying safewhas be-
come an accepted practice in order to prepare the desighdargcoming changes.
This paper describes a refactoring of the design of a pdati@pplication to illus-
trate a suggested approach. In this approach, we reprémedesign using UML,
more specifically the structure using class diagrams, amtbéhaviour of each class
using statecharts.

Examining metrics of the specific design, we suggest a mafiact that changes a cen-
tralized control structure into one that employs more datieq, showing the refac-
tored class and statechart diagrams. As preserving behagione of the defining
attributes of a refactoring, we use a csp-based formalistesaribe the refactoring,
and show that the refactoring indeed preserves behaviour.

Keywords: UML, Restructuring, Refactoring, Statechart, Behavjdnocess Alge-
bra, CSP

1 Introduction

Software in a real-world environment keeps evolving, asitkxt requirements become
clearer, and new requirements emerge. The software evpjMasing modified, having new
functionality added or removed. This often results in therinal structure of the software
becoming more complex and moving away from the originalglesit a certain point it
becomes desirable to reorganize (restructure) the codalar to make the software more
maintainable, readable and extendable. Through experjémas become clear that before
adding new functionality, it is advisable to clean up thesdrg design in order to prepare it
for the coming changes. This process has become known asatesing [Arn86], or better
known as refactoring [Opd92,Fow99] for object-orientefiware. The defining feature of
a refactoring is that the overall behaviour of the systemtrhagpreserved.

As UML has become a de facto standard as a choice for desigudage, we will
focus on refactoring UML models. This area of research iatiredly new and although a
significant amount of refactorings have been defined thatat@®n a source code level,
few have been described that operate on UML models. One dgarhpML refactoring
research is the paper written by Sunyé et al., describingrab{primitive) UML refactoring
operations [SPTJO1].

To prove behaviour preservation several methods can bédesad [MT04]. One way
is using preconditions expressed in first-order predicagi! This is a rather conservative
approach however that rules out many legal refactoringsidv¢ al. suggest a graph trans-
formation formalism, used to check certain aspects of bebapreservation [MDJO02].
Another approach is to use type checking [TKBO03]. All typeftware entities should still
have the same type after the refactoring. These howevepatate on source code for



the most part. Since we will focus on refactoring UML modeks will need to employ a
different method to prove behaviour preservation.

In this paper we describe the refactoring of a real-worldliappion in the form of a
case study illustrating our proposed approach. We desanibethod, using statecharts and
CSP, to prove behaviour preservation, a vital aspect otteffilng. The paper is organized
as follows: The next section introduces the Saat case studyslows the UML design
before and after the refactoring is applied. Section 3 dessithe refactoring needed for
the behaviour of the application. Section 4 describes thpping of statecharts to CSP
and the method used to prove that the refactoring presemedsehaviour of the system.
Finally, we conclude the paper with a few observations.

2 Saat

The program that our case-study is based on is Saat (SofAwelnéecture Analysis Tool)
[MCLO4]. Saat is a tool used to calculate metrics about UMLdelds. These metrics can
then be used in analysing the model for potential flaws oraitierns. As an exercise the
Saat tool was used to calculate metrics about the Saat setfl it

The UML Class-diagram for SAAT was initially drawn as can kersin figure 1. The
associations that are used indicate a call relationskdpifimodule A has an association
with module B, module A will call a method in module B.

Fig. 1. Saat Class diagram before refactoring

StatFilter

Saat

+filter ():void

+ execute ():void

StatCalc

DBCreate

+ calculate ():void

+ create ():void

Analyse

Parser

i + analyse ():void
DBFill DBCheck yse0

+ parse ():void

+fill ():void

+ check ():void

Saat essentially calls the methods in the associated nodelguentially. First the
database is created (DBCreate.create()), the (XMI) inpruidfiparsed (Parser.parse()) and
the parsed data is inserted into the database (DBFill)filfter the data is inserted first it
is checked (DBCheck.check()), after that the data is aedl{Analyse.analyse()), statistics
are calculated (StatCalc.calculate()) and the resultatigtics are filtered according to user
defined criteria.

After evaluating the architecture with SAAT the followingetnics were found (only
the most relevant ones are shown), see table 1. Typically Yédues for dynamic cou-
pling and method call metrics indicate potential futurelgpeons regarding maintainability.
Upon further investigation it was concluded that the Saatlme®was a so called “God-
class”[SWO0].



Table 1. Metrics for the SAAT architecture before refactoring

| |CouplingDynamic CouplingMethod cal|

Saat 7 10 25
StatFilte 0 3 0

A “God-class”, also known as “The Blob” distinguishes ifd®} having a single class
with many attributes and/or operations. It can be chari&etgias a “Controller class” with
simple, data-object classes and it lacks object orientsifjde

In this case we have a ,Controller class”. The Saat classesgiglly calls a number of
methods (services) in other classes.

A “God-class typically has an impact on modifiability, maimability and perfor-
mance.

The design is refactored by introducing two new classes, mB3atistics. The database
operations (DBCreate.create(), Parser.parse(), DBIKjland DBCheck.check()) will be
delegated to the DB class. The statistics operations (8at@lculate() and StatFilter.filter())
will be delegated to the Statistics class. The architect thedified the architecture as can
be seen in figure 2.

The refactoring described here is similar to “Convert Pdocal Design to Objects”,
see [Fow99].

Fig. 2. Saat class diagram after refactoring

Saat

+ execute ():void

DB Statistics

+ execute ():void Analyse

+ execute ():void

+analyse ():void

DBCreate DBCheck StatCalc StatFilter
DBFill

+ create ():void + check ():void + calculate ():void +filter ():void
+fill ():void

Parser

+ parse ():void

3 Statechart refactoring

In order to be able to reason about the behaviour it first neete defined. This will be
done using statecharts in the following manner:

1. Every class in the UML model will have its own statechaefiming its behaviour.
2. Method calls on one object from another will be modeled bil Events. Return from
the method call is modeled by using a signal event in a sydiemvay.



3. Execution of the body of the method is implied by the seimardf the Call Event
[Gro03].
If so desired the behaviour of the method being called cam laésdefined using a
statechart. We will not do so in this example.

For example, say class A wants to execute a methQdn class B, the statechart for class
A will send the eventn() after which it will wait for the return event:_r (the return
event), the initial transition in the statechart for claswiB wait for m() to happen, upon
reception of this event, the body of the method will execdtewhatever else is needed and
then sendn_r. Finally the statechart for class B will wait for the call etegain.

The statechart will then be mapped to CSP notation and itbeikhown that the pro-
cesses before and after the refactoring (while hiding thinatecalls themselves) are iden-
tical in the method body executions and the order thereofdmparing their respective
traces.

Using the heuristics described above we construct a statedbfining the behaviour
for the Saat module before the refactoring, as can be seegurefB on the facing page,
and the statechart for one of the submodules (DBCreate)unefig on the next page. All
other submodules have a similar structure.

The notation for the statecharts is as follows:

— “Object.method()” is used to indicate a call event. The s$itdon waits for the corre-
sponding event. The semantics are that the transition entakd the corresponding
method is executed.

— The notation “*signal_name" is used to transmit an eventdmme In the form “*Ob-
ject.method()” it can be used to transmit a call event.

— The format for a transition label is as follows:
event_name[guard expression]/actionl; action2; ..efeyevent2,...

The transition waits for the event with the name “event_riathéhe event occuraind
the guard expression evaluates to true, the transitiokéntdhe actions are executed,
and the events are transmitted.

After applying the refactoring, two classes have been éhioed, and therefore we need
two new statecharts: one for the class DB, see figure 6 andoortled class Statistics, see
figure 7. The method DB.process() will be called from Saad] e DB class will then
call the methods from the classes whose associations haverbeved to the DB class.
The statechart for the Statistics class is implemented imédas manner. As calling sev-
eral methods has been delegated to DB and Statistics resghgatve also need to change
the statechart corresponding to the Saat class. See figurethef refactored statechart
corresponding to the Saat class.

4 Mapping statecharts to CSP

We will now show how to map the statecharts to correspondi®g €onstructs [Hoa85].

Module A has a (call method) association with Module B. Thiedwéour of Module A
and Module B is defined by processésand(.

Assume that proces8 will call methodm in Proces<). Name the request channgl
name the return channelr. Execution of the methogh() is indicated by the occurence
of an identically named event.

Recall that in CSP, events are considered to be atomic. Asudtréhe foregoing as-
sumes that any other event either occurs before or aftenér@e:(). This is fine in the
present context where concurrency is not being consideli@sever, if we needed to model
the possible concurrent execution of two or more metho@ssth() could be replaced by
two sequential events such 8sart Execution,, ) — FinishExecution,, . This would

4



Fig. 3. Saat statechart before refactoring and DBCreate statechar

/ "DBCreate.create() Waiting for Create Database Created

‘ DBCreate.create_r
Initial State

/ "Parser.parse()

Waiting for Fill Database Parsed

| Parser.parse_r

(o —
Waiting for Parse

/"DBFillfill) ~————————
DBFillfill_r
— T ————
Database filled /"DBCheck.check()  (waiting for DB Check Database Checked
DBCheck.check_r
— —

/ *Analyse.analyse()

Waiting for Calc. Stat. Analysed Analyse.analyse_r Waiting for Analyse

/ ~StatCalc.calculate()

StatCalc.calculate_r

. e f i wre "
Statistics Calculated [ "StatFilter filter() Waiting for Stat. Filter >©
StatFilter filter_r i
Final State

Fig. 4. DBCreate statechart

create()

Initial State

/~"DBCreate.create_r



Fig. 5. Saat Statechart after refactoring

/ "DB.process() Waiting for Data processing ) Data Processed

‘ J DB.process_r
Initial State .

/Analyse.analyse()

Waiting for Analyse

Analyse.analyse_r

©< Statistics.process_r Waiting for Statistics Analysed
Final State

/ ~Statistics.process()

Fig. 6. DB Statechart, introduced after refactoring

Waiting for Create

process() "
. Processing / "DBCreate.create()

Initial State

/"DB.process_r

DBCreate.create_r

DB Checked

Waiting for Parse Database Created

/ "Parser.parse()

DBCheck.check_r Parser.parse_r

(Waiting for DB Check Parsed

/ "DBCheck.check() 1 ~DBFilLfill()

Database filled DBFill fill_r Waiting for Fill Database

L




Fig. 7. Statistics Statechart, introduced after refactoring

Waiting for Stat. Calc.

StatCalc.calculate_r

Stat. Calculated

Final State

process()

Processing

L

/ "StatCalc.calculate()

Initial State

[/ "StatFilter filter()

/ "Statistics.process_r

Stat. Filtered Waiting for Stat. Filtering \

J

StatFilter filter_r

allow for the start and finish events to be arbitrarily interted with other events, thus
modeling concurency.

In the interest of clarity we will use the event() to indicate execution of the method
m().

P=(¢m—qrlz—..)

@ waits for a request to execute methadexecutes it and waits again.

Q = (¢72 — m() — q_rlm — Q)

Further

aq(P) = aq(Q) = aq_r(P) = aq_r(Q) = A = {m}

For the eventg?x andg_r7x, x must be such that € A.

Generally, therefore, the receiver can anticipate reagigny one of the events that are
in A. However, in the present context whetds a singleton set, the receiver can rely on
the message being the only member of the set.

4.1 Mapping Saat to CSP before refactoring

In the case of Saat the mapping to CSP is as follows:

We define channels for sending a call request message andrfding a return from
call message. For the modules the following channels areatef\We keep the naming
short in order to keep the definitions manageable.

[Module naméProcess namé€all request channi@all return channg|

Saat Saat n.a. n.a.
DBCreate | DBCreate cr cr_r
Parser Parser p p_r
DBFill DBFill f fr
DBCheck | DBCheck ch ch_r
Analyse Analyse a ar
StatGen StatGen sg sg_r
StatFilter | StatFilter sf sfr

This gives us the following process definitions. It shoul@lear that the CSP processes
correspond to the statecharts shown earlier. We do not neleeck for the correct message



at the receiving end, as per definition of the alphabet forctiennels, only one message
can be sent.

Saat = (crlereate — cr_r?x — plparse — p_r?x — flfill — f_r?x —
chlcheck — ch_r?x — alanalyse — a_r?x —
sglgenerate — sg_r?x — sflfilter — sf?x — SKIP)
DBCreate = (crtx — create() — cr_rlcreate — DBC'reate)

Parser = (p?z — parse() — p_rlparse — Parser)

DBFill = (f?z — fill() — f_r'fill - DBFill)

DBCheck = (ch?x — check() — ch_rlcheck — DBCheck)
Analyse = (a?x — analyse() — a_rlanalyse — Analyse)
StatGen = (sg?x — generate() — sg_rlgenerate — StatGen)
StatFilter = (sf?x — filter() — sf_r!filter — StatFilter)

The process$ corresponding to the execution of the system is the conetesecution
of the processes:

S = Saat||DBCreate||Parser||DBFill|| DBCheck]||
Analysel||StatGen||Stat Filter

4.2 Mapping Saat to CSP after refactoring

The refactoring introduces two new classes, DB and Stgidior which the channels and
processes are named as follows:

[Module naméProcess nam€all request channi@all return channeél

DB DB db db_r
Statistics Stat st str

The processes for the refactored model are defined as folonly the modified or
added processes are shown. The others have not changed.

Saat’ = (dblprocess — db_r?x — alanalyse — a_r?x —
stlprocess — st_r?x — SKIP)

DB = (db?x — crlereate — cr_r?x — plparse — p_rlz —
fUfill = f_r?xz — chlcheck) — ch_r?xz — db_r!process — DB)
Stat = (st?x — sglgenerate — sg_r?x — sf!filter — sf_r?z —

st_rlprocess — Stat)

The process$’ corresponding to the execution of the refactored systeheisancurrent
execution of the former processes and the two new ones:

S’ = Saat’||DB||Stat||DBCreate||Parser|| DBFill||DBCheck||
Analysel||StatGen||Stat Filter

Note that the introduction of the clad3B, and Statistics and the corresponding
DB.process(), and Stat.process() methods does not lead to the occurence of the cor-
responding method execution events in the CSP definitiois.i$because the execution of
those methods is explicitely modeled by the events to erdbetmethods in the associated
objects.



4.3 Behaviour

Showing that the behaviour of the model before and afterafeetoring is equivalent will
be accomplished by comparing the tracesets for the comelépg CSP processes and
S’

Both processes produce a trace set with only one trace:

Trace set fois:

traces(S) = {< crlcreate, cr?z, create(), cr_rlereate, cr_r?z,
plparse, p?x, parse(), p_rlparse,p_rlx,
fUfall, f 2, fAll(), for! fill, f_rix,
chlcheck, ch?x, check(), ch_rlcheck, ch_r?x,
alanalyse, a?x, analyse(), a_rlanalyse,a_r?x,
sglgenerate, sg?x, generate(), sg_r?x, sg_rtzx,

sflfilter, sf?x, filter(),sf_r!filter,sf?x >}
Trace set forS”:

traces(S’") = {< dblprocess, db?z,
erlereate, crix, create(), cr_rlereate, er_r?x,
plparse, p?x, parse(), p_rlparse,p_r?z,
FUfall, fra, fill(), for! fill, f_ria,
chlcheck, ch?x, check(), ch_r!check, ch_r?x,
db_r'process,db_r?z,
alanalyse, a?x, analyse(), a_rlanalyse, a_r?x,
stlprocess, st?z,
sglgenerate, sg?x, generate(), sg_rlgenerate, sg_rlx,
sflfilter, sf?x, filter(), sf_r!filter,sf_r?x,
st_rlprocess, st_r?x >}

The determining factor for behaviour equivalence here is

1. Having the same method calls in both traces,
2. Having the same order of execution of the method bodies.

Equivalence can thus be examined by hiding all method celthsvand method call return
events. We define a sét containing all method call events and method call returmes/e
and we will employ the hide operator ('\') to hide these. Tyieds the following two trace
sets:

traces(S)\C = traces(S")\C = {< create(), parse(), fill(), check(), analyse(),
generate(), filter() >}

As the traces are now identical we conclude that the behgneidihe two processes is
equivalent and therefore that the refactoring preservedénaviour of the system.

Note that this does not take into account behaviour presensahen real-time require-
ments are enforced, as timing aspects are not considered.

5 Conclusion

In this paper we have introduced and described a refactofiag ML model. This specific

refactoring adds more delegation and improves object tatedesign and maintainability.
We also showed a method using statecharts and CSP to prosreitsehequivalence. This
method involved mapping statechart constructs to equivalSP.



Future work will need to focus on defining more, UML specifefactorings. As these
refactorings operate on more complex designs, compasig sets can become more diffi-
cult. A possible solution would be to define (primitive) stehart refactoring operations that
are each behaviour preserving themselves. This will rerttov@eed to compare tracesets
and thus also address the problems associated with corgpeaesets of more compli-
cated designs.

6 Acknowledgements

We wish to thank Prof. Judith Bishop of the University of @ré&t, for providing us with
valuable feedback.

References

[Arn86] R.S.Arnold. An introduction to software restrudhg. Tutorial on Software Restructuring
1986.

[Fow99] Martin Fowler.Refactoring: Improving the Design of Existing Programsidison-Wesley,
1999.

[Gro03] Object Management Group. Omg unified modeling lagguspecification march 2003,
version 1.5, March 2003.

[Hoa85] C.A.R.HoareCommunicating Sequential ProcessBsentice Hall, 1985.

[MCLO4] J. Muskens, M.R.V. Chaudron, and C.F.J. Lange. stigations in applying metrics to
multi-view architecture models. IEUROMICRO’'04, Rennes, FrancBeptember 2004.

[MDJ02] Tom Mens, Serge Demeyer, and Dirk Janssens. Famglbehaviour preserving program
transformations. IfProceedings of the First International Conference on Grapéinsfor-
mation pages 286—301. Springer-Verlag, 2002.

[MT04] Tom Mens and Tom Tourwé. A survey of software refaicigr IEEE Trans. Softw. Eng.
30(2):126-139, 2004.

[Opd92] W.F. Opdyke.Refactoring: A Program Restructuring Aid in Designing Git{®riented
Application FrameworksPhD thesis, Univ. of lllinois at Urbana-Champaign, 1992.

[SPTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, anu-Nac Jézéquel. Refactoring UML
models. In Martin Gogolla and Cris Kobryn, editotdML 2001 - The Unified Model-
ing Language. Modeling Languages, Concepts, and ToolslMénnational Conference,
Toronto, Canada, October 2001, Proceedingslume 2185 ofLNCS pages 134-148.
Springer, 2001.

[SWO00] Connie U. Smith and Lloyd G. Williams. Software perfance antipatterns. IRro-
ceedings 2nd International Workshop on Software and Perémice, Sept. 200@oftware
Engineering Research and L&S Computer Technology, In€020

[TKBO3] Frank Tip, Adam Kiezun, and Dirk Baumer. Refactagifor generalization using type con-
straints. InObject-Oriented Programming Systems, Languages, andigappins (OOP-
SLA 2003) pages 13-26, Anaheim, CA, USA, November 6-8, 2003.

10



