
Towards Proving Preservation of Behaviour of
Refactoring of UML Models

Marc van Kempen1

Derrick Kourie2

Michel Chaudron3

Andrew Boake4

Eindhoven University of Technologymarc@bowtie.nl
University of Pretoriadkourie@cs.up.ac.za

Eindhoven University of Technologym.r.v.chaudron@tue.nl
University of Pretoriaandrew.boake@up.ac.za

Abstract. Refactoring of a design before updating and modifying software has be-
come an accepted practice in order to prepare the design for the upcoming changes.
This paper describes a refactoring of the design of a particular application to illus-
trate a suggested approach. In this approach, we represent the design using UML,
more specifically the structure using class diagrams, and the behaviour of each class
using statecharts.
Examining metrics of the specific design, we suggest a refactoring that changes a cen-
tralized control structure into one that employs more delegation, showing the refac-
tored class and statechart diagrams. As preserving behaviour is one of the defining
attributes of a refactoring, we use a csp-based formalism todescribe the refactoring,
and show that the refactoring indeed preserves behaviour.
Keywords: UML, Restructuring, Refactoring, Statechart, Behaviour, Process Alge-
bra, CSP

1 Introduction

Software in a real-world environment keeps evolving, as detailed requirements become
clearer, and new requirements emerge. The software evolvesby being modified, having new
functionality added or removed. This often results in the internal structure of the software
becoming more complex and moving away from the original design. At a certain point it
becomes desirable to reorganize (restructure) the code in order to make the software more
maintainable, readable and extendable. Through experience, it has become clear that before
adding new functionality, it is advisable to clean up the existing design in order to prepare it
for the coming changes. This process has become known as restructuring [Arn86], or better
known as refactoring [Opd92,Fow99] for object-oriented software. The defining feature of
a refactoring is that the overall behaviour of the system must be preserved.

As UML has become a de facto standard as a choice for design language, we will
focus on refactoring UML models. This area of research is relatively new and although a
significant amount of refactorings have been defined that operate on a source code level,
few have been described that operate on UML models. One example of UML refactoring
research is the paper written by Sunyé et al., describing several (primitive) UML refactoring
operations [SPTJ01].

To prove behaviour preservation several methods can be considered [MT04]. One way
is using preconditions expressed in first-order predicate logic. This is a rather conservative
approach however that rules out many legal refactorings. Mens et al. suggest a graph trans-
formation formalism, used to check certain aspects of behaviour preservation [MDJ02].
Another approach is to use type checking [TKB03]. All typed software entities should still
have the same type after the refactoring. These however all operate on source code for

the most part. Since we will focus on refactoring UML models we will need to employ a
different method to prove behaviour preservation.

In this paper we describe the refactoring of a real-world application in the form of a
case study illustrating our proposed approach. We describea method, using statecharts and
CSP, to prove behaviour preservation, a vital aspect of refactoring. The paper is organized
as follows: The next section introduces the Saat case study and shows the UML design
before and after the refactoring is applied. Section 3 describes the refactoring needed for
the behaviour of the application. Section 4 describes the mapping of statecharts to CSP
and the method used to prove that the refactoring preserves the behaviour of the system.
Finally, we conclude the paper with a few observations.

2 Saat

The program that our case-study is based on is Saat (SoftwareArchitecture Analysis Tool)
[MCL04]. Saat is a tool used to calculate metrics about UML models. These metrics can
then be used in analysing the model for potential flaws or anti-patterns. As an exercise the
Saat tool was used to calculate metrics about the Saat tool itself.

The UML Class-diagram for SAAT was initially drawn as can be seen in figure 1. The
associations that are used indicate a call relationship, i.e. if module A has an association
with module B, module A will call a method in module B.

Fig. 1.Saat Class diagram before refactoring

Saat

+ execute ():void

DBCreate

+ create ():void

Parser

+ parse ():void

DBFill

+ fill ():void

DBCheck

+ check ():void

Analyse

+ analyse ():void

StatCalc

+ calculate ():void

StatFilter

+ filter ():void

Saat essentially calls the methods in the associated modules sequentially. First the
database is created (DBCreate.create()), the (XMI) input file is parsed (Parser.parse()) and
the parsed data is inserted into the database (DBFill.fill()). After the data is inserted first it
is checked (DBCheck.check()), after that the data is analysed (Analyse.analyse()), statistics
are calculated (StatCalc.calculate()) and the resulting statistics are filtered according to user
defined criteria.

After evaluating the architecture with SAAT the following metrics were found (only
the most relevant ones are shown), see table 1. Typically high values for dynamic cou-
pling and method call metrics indicate potential future problems regarding maintainability.
Upon further investigation it was concluded that the Saat module was a so called “God-
class”[SW00].

2

Table 1.Metrics for the SAAT architecture before refactoring

CouplingDynamic CouplingMethod call

Saat 7 10 25
StatFilter 0 3 0

.

A “God-class”, also known as “The Blob” distinguishes itself by having a single class
with many attributes and/or operations. It can be characterized as a “Controller class” with
simple, data-object classes and it lacks object oriented design.

In this case we have a „Controller class“. The Saat class sequentially calls a number of
methods (services) in other classes.

A “God-class typically has an impact on modifiability, maintainability and perfor-
mance.

The design is refactored by introducing two new classes, DB and Statistics. The database
operations (DBCreate.create(), Parser.parse(), DBFill.fill() and DBCheck.check()) will be
delegated to the DB class. The statistics operations (StatCalc.calculate() and StatFilter.filter())
will be delegated to the Statistics class. The architect then modified the architecture as can
be seen in figure 2.

The refactoring described here is similar to “Convert Procedural Design to Objects”,
see [Fow99].

Fig. 2. Saat class diagram after refactoring

Saat

+ execute ():void

DBCreate

+ create ():void

Parser

+ parse ():void

DBFill

+ fill ():void

DBCheck

+ check ():void

Analyse

+ analyse ():void

StatCalc

+ calculate ():void

StatFilter

+ filter ():void

DB

+ execute ():void

Statistics

+ execute ():void

3 Statechart refactoring

In order to be able to reason about the behaviour it first needsto be defined. This will be
done using statecharts in the following manner:

1. Every class in the UML model will have its own statechart, defining its behaviour.
2. Method calls on one object from another will be modeled by Call Events. Return from

the method call is modeled by using a signal event in a systematic way.

3

3. Execution of the body of the method is implied by the semantics of the Call Event
[Gro03].
If so desired the behaviour of the method being called can also be defined using a
statechart. We will not do so in this example.

For example, say class A wants to execute a methodm() in class B, the statechart for class
A will send the eventm() after which it will wait for the return eventm_r (the return
event), the initial transition in the statechart for class Bwill wait for m() to happen, upon
reception of this event, the body of the method will execute,do whatever else is needed and
then sendm_r. Finally the statechart for class B will wait for the call event again.

The statechart will then be mapped to CSP notation and it willbe shown that the pro-
cesses before and after the refactoring (while hiding the method calls themselves) are iden-
tical in the method body executions and the order thereof by comparing their respective
traces.

Using the heuristics described above we construct a statechart defining the behaviour
for the Saat module before the refactoring, as can be seen in figure 3 on the facing page,
and the statechart for one of the submodules (DBCreate) in figure 4 on the next page. All
other submodules have a similar structure.

The notation for the statecharts is as follows:

– “Object.method()” is used to indicate a call event. The transition waits for the corre-
sponding event. The semantics are that the transition is taken and the corresponding
method is executed.

– The notation “^signal_name“ is used to transmit an event by name. In the form “^Ob-
ject.method()” it can be used to transmit a call event.

– The format for a transition label is as follows:
event_name[guard expression]/action1; action2; ...;^event1,event2,...
The transition waits for the event with the name “event_name”. If the event occursand
the guard expression evaluates to true, the transition is taken, the actions are executed,
and the events are transmitted.

After applying the refactoring, two classes have been introduced, and therefore we need
two new statecharts: one for the class DB, see figure 6 and one for the class Statistics, see
figure 7. The method DB.process() will be called from Saat, and the DB class will then
call the methods from the classes whose associations have been moved to the DB class.
The statechart for the Statistics class is implemented in a similar manner. As calling sev-
eral methods has been delegated to DB and Statistics respectively, we also need to change
the statechart corresponding to the Saat class. See figure 5 for the refactored statechart
corresponding to the Saat class.

4 Mapping statecharts to CSP

We will now show how to map the statecharts to corresponding CSP constructs [Hoa85].
Module A has a (call method) association with Module B. The behaviour of Module A

and Module B is defined by processesP andQ.
Assume that processP will call methodm in ProcessQ. Name the request channelq,

name the return channelq_r. Execution of the methodm() is indicated by the occurence
of an identically named event.

Recall that in CSP, events are considered to be atomic. As a result, the foregoing as-
sumes that any other event either occurs before or after the eventm(). This is fine in the
present context where concurrency is not being considered.However, if we needed to model
the possible concurrent execution of two or more methods, thenm() could be replaced by
two sequential events such asStartExecution

m() → FinishExecution
m(). This would

4

Fig. 3.Saat statechart before refactoring and DBCreate statechart

Initial State

Database Created/ ^DBCreate.create()

Final State

Waiting for Create

DBCreate.create_r

Waiting for Parse

/ ^Parser.parse()

Parsed
Parser.parse_r

Waiting for Fill Database

/ ^DBFill.fill()

Database filled

DBFill.fill_r

Waiting for DB Check/ ^DBCheck.check() Database Checked

DBCheck.check_r

Waiting for Analyse

/ ^Analyse.analyse()

Analysed Analyse.analyse_rWaiting for Calc. Stat.

/ ^StatCalc.calculate()

Statistics Calculated

StatCalc.calculate_r

Waiting for Stat. Filter/ ^StatFilter.filter()

StatFilter.filter_r

Fig. 4.DBCreate statechart

Initial State

Created

create()

/ ^DBCreate.create_r

5

Fig. 5. Saat Statechart after refactoring

Initial State

Data Processed/ ^DB.process()

Final State

Waiting for Data processing

DB.process_r

Waiting for Analyse

/ ^Analyse.analyse()

Analysed

Analyse.analyse_r

Waiting for Statistics

/ ^Statistics.process()

Statistics.process_r

Fig. 6. DB Statechart, introduced after refactoring

Initial State

Database CreatedWaiting for Parse

Waiting for Create

/ ^Parser.parse()

Parsed

Parser.parse_r

Waiting for Fill Database

/ ^DBFill.fill()

Database filled DBFill.fill_r

Waiting for DB Check

/ ^DBCheck.check()

DBCheck.check_r

Processing

DB Checked

/ ^DB.process_r DBCreate.create_r

/ ^DBCreate.create()
process()

6

Fig. 7.Statistics Statechart, introduced after refactoring

Initial State

Waiting for Stat. Calc.

Stat. Calculated

StatCalc.calculate_r

Waiting for Stat. Filtering

/ ^StatFilter.filter()

Final State

StatFilter.filter_r

Processing
process()

Stat. Filtered

/ ^StatCalc.calculate()

/ ^Statistics.process_r

allow for the start and finish events to be arbitrarily interleaved with other events, thus
modeling concurency.

In the interest of clarity we will use the eventm() to indicate execution of the method
m().

P = (q!m → q_r?x → . . .)
Q waits for a request to execute methodm, executes it and waits again.
Q = (q?x → m() → q_r!m → Q)
Further
αq(P) = αq(Q) = αq_r(P) = αq_r(Q) = A = {m}
For the eventsq?x andq_r?x, x must be such thatx ∈ A.
Generally, therefore, the receiver can anticipate receiving any one of the events that are

in A. However, in the present context whereA is a singleton set, the receiver can rely on
the message being the only member of the set.

4.1 Mapping Saat to CSP before refactoring

In the case of Saat the mapping to CSP is as follows:
We define channels for sending a call request message and for sending a return from

call message. For the modules the following channels are defined. We keep the naming
short in order to keep the definitions manageable.

Module nameProcess nameCall request channelCall return channel

Saat Saat n.a. n.a.
DBCreate DBCreate cr cr_r

Parser Parser p p_r
DBFill DBFill f f_r

DBCheck DBCheck ch ch_r
Analyse Analyse a a_r
StatGen StatGen sg sg_r
StatFilter StatFilter sf sf_r

This gives us the following process definitions. It should beclear that the CSP processes
correspond to the statecharts shown earlier. We do not need acheck for the correct message

7

at the receiving end, as per definition of the alphabet for thechannels, only one message
can be sent.

Saat = (cr!create → cr_r?x → p!parse → p_r?x → f !fill → f_r?x →
ch!check → ch_r?x → a!analyse → a_r?x →
sg!generate → sg_r?x → sf !filter → sf?x → SKIP)

DBCreate = (cr?x → create() → cr_r!create → DBCreate)
Parser = (p?x → parse() → p_r!parse → Parser)
DBFill = (f?x → fill() → f_r!fill → DBFill)
DBCheck = (ch?x → check() → ch_r!check → DBCheck)
Analyse = (a?x → analyse() → a_r!analyse → Analyse)
StatGen = (sg?x → generate() → sg_r!generate → StatGen)
StatF ilter = (sf?x → filter() → sf_r!filter → StatF ilter)

The processS corresponding to the execution of the system is the concurrent execution
of the processes:

S = Saat||DBCreate||Parser||DBFill||DBCheck||
Analyse||StatGen||StatF ilter

4.2 Mapping Saat to CSP after refactoring

The refactoring introduces two new classes, DB and Statistics, for which the channels and
processes are named as follows:

Module nameProcess nameCall request channelCall return channel

DB DB db db_r
Statistics Stat st st_r

The processes for the refactored model are defined as follows. Only the modified or
added processes are shown. The others have not changed.

Saat′ = (db!process → db_r?x → a!analyse → a_r?x →
st!process → st_r?x → SKIP)

DB = (db?x → cr!create → cr_r?x → p!parse → p_r?x →
f !fill → f_r?x → ch!check) → ch_r?x → db_r!process → DB)

Stat = (st?x → sg!generate → sg_r?x → sf !filter → sf_r?x →
st_r!process → Stat)

The processS′ corresponding to the execution of the refactored system is the concurrent
execution of the former processes and the two new ones:

S′ = Saat′||DB||Stat||DBCreate||Parser||DBFill||DBCheck||
Analyse||StatGen||StatF ilter

Note that the introduction of the classDB, and Statistics and the corresponding
DB.process(), andStat.process() methods does not lead to the occurence of the cor-
responding method execution events in the CSP definition. This is because the execution of
those methods is explicitely modeled by the events to execute the methods in the associated
objects.

8

4.3 Behaviour

Showing that the behaviour of the model before and after the refactoring is equivalent will
be accomplished by comparing the tracesets for the corresponding CSP processesS and
S′.

Both processes produce a trace set with only one trace:
Trace set forS:

traces(S) = {< cr!create, cr?x, create(), cr_r!create, cr_r?x,

p!parse, p?x, parse(), p_r!parse, p_r?x,

f !fill, f?x, fill(), f_r!fill, f_r?x,

ch!check, ch?x, check(), ch_r!check, ch_r?x,

a!analyse, a?x, analyse(), a_r!analyse, a_r?x,

sg!generate, sg?x, generate(), sg_r?x, sg_r?x,

sf !filter, sf?x, filter(), sf_r!filter, sf?x >}

Trace set forS′:

traces(S′) = {< db!process, db?x,

cr!create, cr?x, create(), cr_r!create, cr_r?x,

p!parse, p?x, parse(), p_r!parse, p_r?x,

f !fill, f?x, fill(), f_r!fill, f_r?x,

ch!check, ch?x, check(), ch_r!check, ch_r?x,

db_r!process, db_r?x,

a!analyse, a?x, analyse(), a_r!analyse, a_r?x,

st!process, st?x,

sg!generate, sg?x, generate(), sg_r!generate, sg_r?x,

sf !filter, sf?x, filter(), sf_r!filter, sf_r?x,

st_r!process, st_r?x >}

The determining factor for behaviour equivalence here is

1. Having the same method calls in both traces,
2. Having the same order of execution of the method bodies.

Equivalence can thus be examined by hiding all method call events and method call return
events. We define a setC containing all method call events and method call return events,
and we will employ the hide operator (’\’) to hide these. Thisyields the following two trace
sets:

traces(S)\C = traces(S′)\C = {< create(), parse(), f ill(), check(), analyse(),
generate(), f ilter() >}

As the traces are now identical we conclude that the behaviour of the two processes is
equivalent and therefore that the refactoring preserved the behaviour of the system.

Note that this does not take into account behaviour preservation when real-time require-
ments are enforced, as timing aspects are not considered.

5 Conclusion

In this paper we have introduced and described a refactoringof a UML model. This specific
refactoring adds more delegation and improves object oriented design and maintainability.
We also showed a method using statecharts and CSP to prove behaviour equivalence. This
method involved mapping statechart constructs to equivalent CSP.

9

Future work will need to focus on defining more, UML specific, refactorings. As these
refactorings operate on more complex designs, comparing trace sets can become more diffi-
cult. A possible solution would be to define (primitive) statechart refactoring operations that
are each behaviour preserving themselves. This will removethe need to compare tracesets
and thus also address the problems associated with comparing tracesets of more compli-
cated designs.

6 Acknowledgements

We wish to thank Prof. Judith Bishop of the University of Pretoria, for providing us with
valuable feedback.

References

[Arn86] R.S. Arnold. An introduction to software restructuring. Tutorial on Software Restructuring,
1986.

[Fow99] Martin Fowler.Refactoring: Improving the Design of Existing Programs. Addison-Wesley,
1999.

[Gro03] Object Management Group. Omg unified modeling language specification march 2003,
version 1.5, March 2003.

[Hoa85] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.
[MCL04] J. Muskens, M.R.V. Chaudron, and C.F.J. Lange. Investigations in applying metrics to

multi-view architecture models. InEUROMICRO’04, Rennes, France, September 2004.
[MDJ02] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour preserving program

transformations. InProceedings of the First International Conference on GraphTransfor-
mation, pages 286–301. Springer-Verlag, 2002.

[MT04] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans. Softw. Eng.,
30(2):126–139, 2004.

[Opd92] W.F. Opdyke.Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application Frameworks.PhD thesis, Univ. of Illinois at Urbana-Champaign, 1992.

[SPTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring UML
models. In Martin Gogolla and Cris Kobryn, editors,UML 2001 - The Unified Model-
ing Language. Modeling Languages, Concepts, and Tools. 4thInternational Conference,
Toronto, Canada, October 2001, Proceedings, volume 2185 ofLNCS, pages 134–148.
Springer, 2001.

[SW00] Connie U. Smith and Lloyd G. Williams. Software performance antipatterns. InPro-
ceedings 2nd International Workshop on Software and Performance, Sept. 2000. Software
Engineering Research and L&S Computer Technology, Inc., 2000.

[TKB03] Frank Tip, Adam Kieżun, and Dirk Bäumer. Refactoring for generalization using type con-
straints. InObject-Oriented Programming Systems, Languages, and Applications (OOP-
SLA 2003), pages 13–26, Anaheim, CA, USA, November 6–8, 2003.

10

