
A Case for
Contemporary

Literate Programming

Vreda Pieterse
Derrick Kourie
Andrew Boake

Department of Computer Science
Pretoria University

Agenda
• Introduction
• LP Essentials
• LP Environments
• Current Trends
• Conclusion

Introduction
• LP introduced by Knuth in 1984

– Program: “explains solution” to computer (instructions)
– LP: explains solution to human (document)
– LP programs should be enjoyable to read

• Last 20 years:
– Some recognition but not widely accepted

• Hypothesis: Now is the “kairos”
– Technology is adequate
– Need is strong
– Time has arrived for LP

LP Essentials (1)
• Literate Quality

– Programs as art / Pleasant for humans
• Psychological order

– Ordered to enhance human understanding
– Might be quite different from compiler needs

• Integrated documentation
– Explanation to humans with “code comments”

to be extracted for compilation

LP Essentials (2)
• TOC, index & cross references

– Should be automatically generated
– Should be easily searchable
– Contemporary facility: hyperlinks

• Pretty printing
– Colour-coded keywords / special fonts, etc.
– Now commonplace

• Verisimilitude
– Facilities to keep code and documentation in

sync

LP Origins: Tex?
\section{The Algorithm}
The algorithm to be constructed assumes that

the lattice L has at least one element,
\top_{L}, and that the element to be
inserted into L is a proper subset of
\top_{L}. It is trivial to adapt the
algorithm for cases where this does not
apply.

The pre- and postconditions for the algorithm
may therefore be stated as follows.

\begin{gcl}
\PROC insert(\ell)
\PRE \{isSICL() \wedge \ell \subset \top_{L}

\wedge L^{'} = L\}
(L) : S
\POST \{isSICL() \wedge \ell \in L \wedge

isMin(L^{'},\ell) \}
\end{gcl}
To elaborate statement S, two possible

situations have to be considered. In the
first case, the boundary case, \top_{L}
may be the only element in the lattice

LP Environments (1)
• Pioneers: Language specific

– Knuth’s WEB in 1984

• Language Independency
– LIPED (Bishop et al): Assembler, Clipper, Pascal
– LEO (Ream): Java, C, C++, Pascal, Fortran, Python, …

ment

Typographic Document

Executable
code

Pascal Compiler

TEX

TANGLE

WEAVE

Editor

Source Docu

LP Environments (2)
• OO Programming

– Yoyo problem: inheritance hierarchy
– Browser for hypertext (ease navigation)
– AOPS by Shum et al, 1993

• Wysiwyg
– Main document in 3rd party editor
– LPW by Lindberg, 1991

• Interactive coding / debugging
– Address need to interact with code
– Separates code and document
– IDE eliminates need for code extractor
– WARP by Thimbleby, 2003

• Tool for journal publications

LP Environments (3)
• Elucidative Programming Environments

– Separates code and doc
– Supports program maintenance
– Elucidator: Normark et al, 2000

Elucidator

Typographic Source Document

Original source
code IDE

Third Party Editor

Browser

LP Environments (4)
• Theme based LP

– Use XML to create docs whose info can be
presented in views to different audiences

– CBDE by Kacofegitis et al, 2002
– Atomic units: chucks

• Code segment
• Piece of documentation
• Diagram
• Unit test
• Etc.

Trends (1)
• Documentation

– Remains important
– LP addresses mismatch problem

• Javadoc
– Widely accepted
– Half the battle won

• IDE Development
– Pretty printing, navigation, verisimilitude between

model & code, toc, etc
– LPE needed to integrate narrative (eg to explain design

rationale)

Trends (2)
• Event-driven programming

– Behaviour in code difficult to document
– Theme based LP: Define a theme for each event
– Extract relevant info for online user help
– Sync with actual implementation

• Design patterns
– Standardization is an issue
– LP can help in understandability and searching

• Portability
– XML used for standards to interchange data among various tools
– LPEs exist to implement XML technology to integrate tools

Trends (3)
• Agile methods

– Scalability and outsourcing is a problem
– LP can alleviate problems about team/project size

• Open source software
– Concerns about code comprehensibility
– LP can advance growth and success of OSS

• Product-line based SE
– Involves large-scale reuse of artifacts / components
– Difficult to determine component capability
– LP-documented components would be beneficial

• Aspect oriented programming
– Addresses functionality that cuts across system (power

consumption, failure handling, security, etc.)
– Highly reusable code
– LP to support documentation

Conclusion
• Closing semantic gap between code / understanding
• Agile:

– Self-documenting code
– Pair programming / collective ownership
– External doc – separately budgeted item

• However:
– Inadequate for complex systems
– Cartesian cleavage between code and doc is

unprofessional
• Recognize resistance to documentation

– Educational responsibility
• Future: Integrate LP features into IDE

	A Case for Contemporary Literate Programming
	Agenda
	Introduction
	LP Essentials (1)
	LP Essentials (2)
	LP Origins: Tex?
	LP Environments (1)
	LP Environments (2)
	LP Environments (3)
	LP Environments (4)
	Trends (1)
	Trends (2)
	Trends (3)
	Conclusion

