[Espresso-Fastar Workshop, Schanskop/Pretoria, October 2007]

A new CSP Operator for Partial Parallelism

Strauss/Kourie/Gruner/Roggenbach/Watson

[submitted to: Information Processing Letters - awaiting Review]

Summary

- In our recent submission to the Information Processing Letters, we introduced a novel CSP Operator, characterized by *optional* (or partial) *Parallelism*
- We describe relevant application scenarios and provide the semantics of the operator in the basic trace-model \mathcal{T}

Context of the Work

- Upcoming PhD Thesis: Tinus Strauss
- British/South-African Research Project: Roggenbach (GB) / Kourie-Gruner (ZA)
 - Grant Acknowledgments:
 - NRF
 - Royal Society

Scenario (1): Broadcasting

Scenario (2): Read-and-Update

Comparison of CSP Operators

- Classical Parallelism Operator: "all or nothing"
- Either every Listener reacts, or the system does not progress
- Not suitable for modeling those scenarios

- New Partial Parallelism Operator: "some may sleep"
- System can make progress if at least one Listener can react
- Suitable for modeling those scenarios

Comparison of CSP Operators

- The semantics of CSP Operators can be defined inductively in terms of Step-Rules
- Given two processes P₁ and P₂ and some Operator Ω , the Step-Rule describes what can happen *next* in the combined process **P** = (P₁ Ω P₂)
- Thereby it is also taken into account:
 - what alphabet can be processed by P1
 - what alphabet can be processed by P2
 - what alphabet is allowed on their link-channel

Comparison of CSP Operators

 The formal description of the new Partial Parallel Operator (in terms of Step-Rules and Channel-Alphabets) reveals a wider applicability of the new Partial Parallel Operator, in comparison with the classical Parallel Operator.

Comparison of CSP Operators Process Alphabet A2 Process Alphabet A1 \square D Classical Parallel Operator, unlike the partial one, **DEADLOCKS** if event is from sub-domain D Channel Alphabet X

Properties of the new Operator

- The new Partial Parallel Operator is continuous in the Trace Model \mathcal{T}
- Note:
 - Continuity is necessary for *Fixpoint* Proofs
 - The *Fixpoint* property is necessary for the validity of recursive process definitions with the new Operator, of kind $P = (... \Omega ... P ...)$

Properties of the new Operator

- The new Partial Parallel Operator is also
 - idempotent
 - symmetric
 - associative
 - in the Trace Model \mathcal{T}

Properties of the new Operator

• $\mathbf{P}_1 \ \mathbf{\Omega}_{\{\}} \ \mathbf{P}_2 = \mathbf{P}_1 \ ||| \ \mathbf{P}_2$

- like classical on empty channel alphabet

- **P** Ω STOP = **P**
- **P** Ω SKIP = **P**
- $\mathbf{P}_1 \ \Omega \ (\mathbf{P}_2 \ \square \ \mathbf{P}_3) = (\mathbf{P}_1 \ \Omega \ \mathbf{P}_2) \ \square \ (\mathbf{P}_1 \ \Omega \ \mathbf{P}_3)$
- Note:

 A number of further properties can be found in our paper submitted to the Inform.Proc.Letters

Possible Future Work

- More Proofs (not all Properties yet proven)
- More Properties (only most obvious found)
- Other Semantic Domains (*not only T*)
- Variants of the Operator (e.g. parameters)
- Experimental Validation and Tool-Support
- Unified Theory of Process Modeling (?!?)

Time for Discussion...

Any questions, suggestions, ideas...?

[Schanskop Conference Venue, Pretoria]