A new CSP Operator for Partial Parallelism

Strauss/Kourie/Gruner/Roggenbach/Watson

[submitted to: Information Processing Letters – awaiting Review]
Summary

• In our recent submission to the Information Processing Letters, we introduced a novel CSP Operator, characterized by *optional* (or partial) *Parallelism*

• We describe relevant application scenarios and provide the semantics of the operator in the basic trace-model τ
Context of the Work

• Upcoming PhD Thesis: Tinus Strauss
• British/South-African Research Project: Roggenbach (GB) / Kourie-Gruner (ZA)
 – Grant Acknowledgments:
 • NRF
 • Royal Society
Scenario (1): Broadcasting

{ cannot react } { ready to react }
Scenario (2): Read-and-Update

exclusive updates

DB

exclusive updates

<dat1>

shared reading

<dat>

<dat>

RW

<dat2>

RW
Comparison of CSP Operators

<table>
<thead>
<tr>
<th>Classical Parallelism Operator: “all or nothing”</th>
<th>New Partial Parallelism Operator: “some may sleep”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either every Listener reacts, or the system does not progress</td>
<td>System can make progress if at least one Listener can react</td>
</tr>
<tr>
<td>Not suitable for modeling those scenarios</td>
<td>Suitable for modeling those scenarios</td>
</tr>
</tbody>
</table>

“Some may sleep”

System can make progress if at least one Listener can react.
Comparison of CSP Operators

- The semantics of CSP Operators can be defined inductively in terms of Step-Rules.
- Given two processes P_1 and P_2 and some Operator Ω, the Step-Rule describes what can happen \textit{next} in the combined process $P = (P_1 \Omega P_2)$.
- Thereby it is also taken into account:
 - what alphabet can be processed by P_1
 - what alphabet can be processed by P_2
 - what alphabet is allowed on their link-channel
Comparison of CSP Operators

• The formal description of the new Partial Parallel Operator (in terms of Step-Rules and Channel-Alphabets) reveals a wider applicability of the new Partial Parallel Operator, in comparison with the classical Parallel Operator.
Comparison of CSP Operators

Process Alphabet A2

Process Alphabet A1

Domain of Events

Channel Alphabet X
Comparison of CSP Operators

Process Alphabet A2

Classical Parallel Operator, unlike the partial one, DEADLOCKS if event is from sub-domain D

Process Alphabet A1

Channel Alphabet X
Properties of the new Operator

• The new Partial Parallel Operator is **continuous in the Trace Model** \mathcal{T}

• Note:
 – Continuity is necessary for **Fixpoint** Proofs
 – The **Fixpoint** property is necessary for the validity of recursive process definitions with the new Operator, of kind $\mathcal{P} = (... \Omega ... \mathcal{P} ...)$
Properties of the new Operator

• The new Partial Parallel Operator is also
 – idempotent
 – symmetric
 – associative

in the Trace Model \(\triangledown \)
Properties of the new Operator

- $P_1 \Omega \{\} \ P_2 = P_1 \ ||\ || \ P_2$
 - like classical on empty channel alphabet
- $P \ \Omega \ \text{STOP} = P$
- $P \ \Omega \ \text{SKIP} = P$
- $P_1 \ \Omega \ (P_2 \ \square \ P_3) = (P_1 \ \Omega \ P_2) \ \square \ (P_1 \ \Omega \ P_3)$

Note:
- A number of further properties can be found in our paper submitted to the Inform.Proc.Letters
Possible Future Work

• More Proofs (*not all Properties yet proven*)
• More Properties (*only most obvious found*)
• Other Semantic Domains (*not only \(T \)*)
• Variants of the Operator (*e.g. parameters*)
• Experimental Validation and Tool-Support
• **Unified Theory** of Process Modeling (*?!?*)
Time for Discussion...

Any questions, suggestions, ideas...?