
A Generative Graph A Generative Graph 

Toolkit for C++Toolkit for C++

Presented Presented 

By By 

Theodore KoopmanTheodore Koopman



OverviewOverview

�� ObjectivesObjectives

�� Differentiating between generic and generativeDifferentiating between generic and generative

�� Benefits of a generative toolkitBenefits of a generative toolkit

�� Planning Planning 

�� Designing Designing 

�� ImplementingImplementing

�� DisadvantagesDisadvantages

�� ConclusionConclusion



ObjectivesObjectives

�� Explore different ways of representing Explore different ways of representing 

graphsgraphs

�� Exploring C++ metaExploring C++ meta--programming programming 

techniques to implement the toolkittechniques to implement the toolkit

�� Discover a naming convention for the Discover a naming convention for the 

graph representationsgraph representations



Differentiating between generic and Differentiating between generic and 

generativegenerative

�� GenericGeneric

�� GenerativeGenerative



Benefits of a generative toolkitBenefits of a generative toolkit

�� Compile time checkingCompile time checking

�� More efficiencyMore efficiency

�� Relatively easy to maintainRelatively easy to maintain

�� Elementary componentsElementary components

�� Maximum combinabilityMaximum combinability

�� Minimum redundancyMinimum redundancy



PlanningPlanning

�� Use a domain engineering process such Use a domain engineering process such 

as DEMRAL (Domain Engineering Method as DEMRAL (Domain Engineering Method 

for Reusable Algorithmic Libraries)for Reusable Algorithmic Libraries)

�� Define the domainDefine the domain

�� Model the domainModel the domain



DesigningDesigning

�� Specify the toolkit in terms of feature Specify the toolkit in terms of feature 

diagrams (feature modeling)diagrams (feature modeling)

�� Feature diagramsFeature diagrams

�� Concepts & featuresConcepts & features

�� Compulsory featureCompulsory feature

�� Optional featureOptional feature

�� AlternativesAlternatives



Concepts & FeaturesConcepts & Features

�� ConceptConcept

�� Example: Car Example: Car 

�� FeatureFeature

�� Example: WheelExample: Wheel



Compulsory FeatureCompulsory Feature

�� Denoted by filled circle at the end of Denoted by filled circle at the end of 

connectionconnection

�� Appears in the set if the parent is in the setAppears in the set if the parent is in the set

�� ExampleExample

�� {{Car, Wheel, Seat}Car, Wheel, Seat}
Car

Wheel Seat



Optional FeatureOptional Feature

�� Depicted by an unfilled circleDepicted by an unfilled circle

�� Can appear in the set if the parent is in the setCan appear in the set if the parent is in the set

�� ExampleExample

�� {Car, Wheel, Seat, Sunroof} {Car, Wheel, Seat, Sunroof} 

�� {Car, Wheel, Seat, Radio}{Car, Wheel, Seat, Radio}

�� {Car, Wheel, Seat}{Car, Wheel, Seat} Car

Wheel SeatRadioSunroof



Alternative FeaturesAlternative Features

�� Denoted by an unfilled arc joining two or more featuresDenoted by an unfilled arc joining two or more features

�� Groups features togetherGroups features together

�� One feature from the group should appear if it is marked One feature from the group should appear if it is marked 

as compulsoryas compulsory

�� ExampleExample

�� {Car, Wheel, Seat, Radio}{Car, Wheel, Seat, Radio}

�� {Car, Wheel, Seat, Sunroof}{Car, Wheel, Seat, Sunroof} Car

Wheel SeatRadioSunroof



Design In ContextDesign In Context

�� Concept: Concept: 

�� GraphsGraphs

�� Features:Features:

�� Type of container/collection usedType of container/collection used

�� Type of insertion method usedType of insertion method used

�� Type of lookup method usedType of lookup method used

�� Type of isomorphism is usedType of isomorphism is used



Graph Design & ModelingGraph Design & Modeling

�� Graph definitionGraph definition
�� T = {NT = {Nss, E, N, E, Ndd}}

�� G = {TG = {T00, T, T11, , ……, T, Tnn}}

�� Types of graphsTypes of graphs
�� Linear, binary, mapped or hashedLinear, binary, mapped or hashed

�� OptionsOptions
�� IsomorphismIsomorphism

�� LeftLeft--associated, rightassociated, right--associated, reversed or transposedassociated, reversed or transposed

�� Insertion policyInsertion policy
�� InsertInsert--atat--head, inserthead, insert--atat--tailtail

�� Lookup policyLookup policy
�� MoveMove--toto--front, migratefront, migrate--forward, onforward, on--foundfound

�� Traversal policyTraversal policy
�� PrePre--order, inorder, in--order, postorder, post--orderorder



ImplementingImplementing

�� Static metaStatic meta--programmingprogramming

�� Use templates for:Use templates for:

�� Representing meta informationRepresenting meta information

�� Application of meta functionsApplication of meta functions

�� Example of a meta function (The Example of a meta function (The ‘‘IFIF’’ construct):construct):

template<bool Condition, class Then, class Else>template<bool Condition, class Then, class Else>

struct IF{ typedef Then Return; };struct IF{ typedef Then Return; };

template<class Then, class Else>template<class Then, class Else>

struct IF<false, Then, Else> IF{ typedef Else Return; };struct IF<false, Then, Else> IF{ typedef Else Return; };



Implementation in ContextImplementation in Context

�� Define properties of the graphDefine properties of the graph

�� Define the graph class interfaceDefine the graph class interface

�� Individualise algorithmsIndividualise algorithms

�� Build the graph class generatorBuild the graph class generator

�� Use the product of the graph class Use the product of the graph class 

generatorgenerator



DisadvantagesDisadvantages

�� Time consuming to buildTime consuming to build

�� Unfriendly error messages generated by Unfriendly error messages generated by 

compilercompiler

�� Constructs used are compiler dependentConstructs used are compiler dependent



ConclusionConclusion

�� Despite the disadvantages, we are able to Despite the disadvantages, we are able to 

produce a graph toolkit that has:produce a graph toolkit that has:

�� A single graph class A single graph class 

�� Different representations Different representations 

�� Different algorithmsDifferent algorithms

�� With a single interface that is:With a single interface that is:

�� Relatively easy to maintain and extendRelatively easy to maintain and extend

�� Easy to understand and useEasy to understand and use


