A Generative Graph
Toolkit for C++

Presented
By
TTheodoere Keopman




Overview

Objectives

Differentiating between generic and generative
Benefits ofi a generative toolkit

Planning

Designing

mplementing

Disadvantages

Conclusion




Objectives

= Fxplore different ways ofi representing
graphs

= Fxploring C++ meta-programming
technigues to implement the toolkit

= [Discover a haming convention for the
graph representations




Diiferentiating between generic anad
generative

" (Generic
" Generative




Benetits of a generative toolkit

= Compile time checking

= ore efficiency.

= Relatively easy tormaintain
= Flementary components

= \iaximun combinanility.

= \inimum: redundancy.




Planning

= Use a domain engineering process such
as DEMRAL (Domain Engineering Methoad
for Reusable Algorithmic Libraries)

" Define the domain
" Model the domain




Designing

= Specify the toolkit in terms: of feature
diagrams (feature modeling)

= Feature diagrams

= Concepts & features
= Compulsory feature
= Optional feature
= Alternatives




Concepls & Features

= Concept
= Example: Car

= Feature
= Example: Wheel




Compulsory Feature

= PDenoted by filled circle at the end: of
connection

= Appears in the set if the parent is in the set

m Example
= [Car, Wheel, Seat]}

e




Optional Feature

= Depicted by an: unfilled circle
= Can appear In the set If the parent is in the set
= Example

= Car, Wheel, Seat, Sunroof}

= [Car, Wheel, Seat, Radio}
= ICar, Wheel, Seat}

M\o

Sunroof




Alternative Features

Denoted by an unfilled are joining two or more features

Groups features together
One feature from the group should appear If it is marked
as compulsory.

Example
= {Car, Wheel, Seat, Radio}
= ICar, Wheel, Seat, Sunroof}

M\o

Sunroof




Design In' Context

= Concept:

= Graphs
= Features:
ype of container/collection; used
ype of insertion method used
ype of lookup method used
VPE off ISomorphism is used




Graph Designi & Vodeling

= Graph definition
= T ={N,, E, Ng}
o G={Tg T5, - T}
= Jypes of graphs
= |inear, binary, mapped or hashed
= Options
= |somorphism
= | eft-associated, right-associated, reversed or transposed

= |nsertion policy

" |nsert-at-head, insert-at-tail
= | ookup pelicy

= |Vlove-to-front, migrate-ferward, on-foeund
= [raversal policy.

= Pre-order, in-order, post-order




Implementing

= Static meta-programming

= Use templates for:
= Bepresenting meta information

= Application of meta functions

= Fxample of a meta function (The ‘I construct):
template<bool Condition, class Then, class Else>
struct IF{ typedef Then Return; };

template<class Ithen, class Else>
struct IF<false, Then, Else> IF{ typedefl Else Return; };




Implementation 1 Context

Define properties of the graph
Define the graph class interface
ndividualise algorithms

Build the graph class generator

= Use the proeduct of the graphi class
generator




Disaavantages

= Time consuming to build

= Unfriendly error messages generated by
compiler

= Constructs used are compiler dependent




Conclusion

= Despite the disadvantages, we are aple o
produce a graph toolkit that has:
= A single graph class
= Different representations
= Different algoerithms

= With a single interface that Is:
= Belatively easy te maintain and extend
= Fasy te understand and use




