Theoretical automata theory: \oplus-NFAs

- Succinctness
- Minimization and compression

Practical work: assistive technologies

- English text to South African Sign Language // sign recognition
- Assistive software for autism – games for speech therapy, cognitive robotics
Theoretical automata theory: \oplus-NFAs
- Succinctness
 - Minimization and compression

Practical work: assistive technologies
- English text to South African Sign Language // sign recognition
- Assistive software for autism – games for speech therapy, cognitive robotics
● Theoretical automata theory: ⊕-NFAs
 ● Succinctness
 ● Minimization and compression

● Practical work: assistive technologies
 ● English text to South African Sign Language // sign recognition
 ● Assistive software for autism – games for speech therapy, cognitive robotics
Shameless advertising

- Theoretical automata theory: \oplus-NFAs
 - Succinctness
 - Minimization and compression
- Practical work: assistive technologies
 - English text to South African Sign Language // sign recognition
 - Assistive software for autism – games for speech therapy, cognitive robotics
Theoretical automata theory: \oplus-NFAs
- Succinctness
- Minimization and compression

Practical work: assistive technologies
- English text to South African Sign Language // sign recognition
- Assistive software for autism – games for speech therapy, cognitive robotics
Theoretical automata theory: \(\oplus\)-NFAs
- Succinctness
- Minimization and compression

Practical work: assistive technologies
- English text to South African Sign Language // sign recognition
- Assistive software for autism – games for speech therapy, cognitive robotics
Overview

- NFAs and \oplus-NFAs
 - Ambiguity: definition, importance
 - Ambiguity in \oplus-NFAs
Overview

- NFAs and \oplus-NFAs
- Ambiguity: definition, importance
- Ambiguity in \oplus-NFAs
Overview

- NFAs and \oplus-NFAs
- Ambiguity: definition, importance
- Ambiguity in \oplus-NFAs
NFA reminder

An NFA is a finite state machine that, on reading its input string, can nondeterministically decide to which of its possible next states it wants to move. *Accepts language.*
An NFA is a finite state machine that, on reading its input string, can nondeterministically decide to which of its possible next states it wants to move. *Accepts language.*
An NFA is a finite state machine that, on reading its input string, can nondeterministically decide to which of its possible next states it wants to move. *Accepts language.*
An NFA is a finite state machine that, on reading its input string, can nondeterministically decide to which of its possible next states it wants to move. *Accepts language.*
An NFA is a finite state machine that, on reading its input string, can nondeterministically decide to which of its possible next states it wants to move. **Accepts language.**
What is a ⊕-NFA?
Parity machine – in execution tree, takes XOR of possible choices.

Why ⊕-NFAs?
- Sequencing versus ringlike repetition
- Hardware implementation as LFSR
- Regular languages distribution
What is a \oplus-NFA?

Parity machine – in execution tree, takes XOR of possible choices.

Why \oplus-NFAs?

- Sequencing versus ringlike repetition
- Hardware implementation as LFSR
- Regular languages distribution
What is a \oplus-NFA?
Parity machine – in execution tree, takes XOR of possible choices.

Why \oplus-NFAs?
- Sequencing versus ringlike repetition
- Hardware implementation as LFSR
- Regular languages distribution
What is a \oplus-NFA?

Parity machine – in execution tree, takes XOR of possible choices.

Why \oplus-NFAs?

- Sequencing versus ringlike repetition
- Hardware implementation as LFSR
- Regular languages distribution
What is ambiguity?

Given an NFA M, we define the ambiguity of a string w to be the number of different accepting paths for w in M. Function $amb_M(n)$ is max of ambiguities of strings of length n or less.

Types of ambiguity

- unambiguous: ambiguity of any string is zero or one
- finitely ambiguous: $amb_M(n)$ bounded by constant function
- polynomially ambiguous: $amb_M(n)$ bounded by polynomial function
- exponentially ambiguous: $amb_M(n)$ bounded by exponential function
What is ambiguity?

Given an NFA M, we define the ambiguity of a string w to be the number of different accepting paths for w in M. Function $amb_M(n)$ is max of ambiguities of strings of length n or less.

Types of ambiguity

- unambiguous: ambiguity of any string is zero or one
- finitely ambiguous: $amb_M(n)$ bounded by constant function
- polynomially ambiguous: $amb_M(n)$ bounded by polynomial function
- exponentially ambiguous: $amb_M(n)$ bounded by exponential function
What is ambiguity?
Given an NFA M, we define the ambiguity of a string w to be the number of different accepting paths for w in M. Function $amb_M(n)$ is max of ambiguities of strings of length n or less.

Types of ambiguity
- unambiguous: ambiguity of any string is zero or one
- finitely ambiguous: $amb_M(n)$ bounded by constant function
- polynomially ambiguous: $amb_M(n)$ bounded by polynomial function
- exponentially ambiguous: $amb_M(n)$ bounded by exponential function
What is ambiguity?

Given an NFA M, we define the ambiguity of a string w to be the number of different accepting paths for w in M. Function $amb_M(n)$ is max of ambiguities of strings of length n or less.

Types of ambiguity

- unambiguous: ambiguity of any string is zero or one
- finitely ambiguous: $amb_M(n)$ bounded by constant function
- polynomially ambiguous: $amb_M(n)$ bounded by polynomial function
- exponentially ambiguous: $amb_M(n)$ bounded by exponential function
Ambiguity

What is ambiguity?

Given an NFA M, we define the ambiguity of a string w to be the number of different accepting paths for w in M. Function $amb_M(n)$ is max of ambiguities of strings of length n or less.

Types of ambiguity

- unambiguous: ambiguity of any string is zero or one
- finitely ambiguous: $amb_M(n)$ bounded by constant function
- polynomially ambiguous: $amb_M(n)$ bounded by polynomial function
- exponentially ambiguous: $amb_M(n)$ bounded by exponential function
<table>
<thead>
<tr>
<th>Why is ambiguity important?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Nondeterminism is a resource of a finite automaton.</td>
</tr>
<tr>
<td>- Does the size of an NFA vary as the amount of ambiguity increases?</td>
</tr>
<tr>
<td>- (related to number of nondeterministic moves vs size)</td>
</tr>
</tbody>
</table>
Why is ambiguity important?

- Nondeterminism is a **resource** of a finite automaton.
- Does the size of an NFA vary as the amount of ambiguity increases?
 - (related to number of nondeterministic moves vs size)
Why is ambiguity important?

- Nondeterminism is a **resource** of a finite automaton.
- Does the size of an NFA vary as the amount of ambiguity increases?
- *(related to number of nondeterministic moves vs size)*
Examples of ambiguity in \oplus-NFAs

Unambiguous \oplus-NFA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>q_0</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>q_1</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_0}$</td>
</tr>
</tbody>
</table>
Examples of ambiguity in \oplus-NFAs

Unambiguous \oplus-NFA

- q_0 to q_0 with label a
- q_0 to q_1 with label a
- q_0 to q_2 with label a

Transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>q_1</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_0}$</td>
</tr>
</tbody>
</table>
Examples of ambiguity in \oplus-NFAs

k-ambiguous \oplus-NFA

Lynette van Zijl
Ambiguity in Symmetric Difference NFAs
Examples of ambiguity in ⊕-NFAs

Polynomially ambiguous ⊕-NFA

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

- q_0: $\{q_1, q_2, q_3\}$
- q_1: $\{q_1, q_3\}$
- q_2: $\{q_2, q_3\}$
- q_3: $\{q_3\}$

Lynette van Zijl
Ambiguity in Symmetric Difference NFAs
Polynomially ambiguous \oplus-NFA

Lynette van Zijl
Ambiguity in Symmetric Difference NFA
Examples of ambiguity in \oplus-NFAs

Exponentially ambiguous \oplus-NFA

Lynette van Zijl
Ambiguity in Symmetric Difference NFAs
Exponentially ambiguous \oplus-NFA

Lynette van Zijl
Ambiguity in Symmetric Difference NFAs
Ambiguity: current status

What have we achieved?
- Shown patterns to form ambiguous behaviour in structure

What remains?
- Succinct examples for each ambiguity class
- Families of languages to show relationship between ambiguity classes
- As above, but between traditional NFAs and ⊕-NFAs
Ambiguity: current status

What have we achieved?
- Shown patterns to form ambiguous behaviour in structure

What remains?
- Succinct examples for each ambiguity class
- Families of languages to show relationship between ambiguity classes
- As above, but between traditional NFAs and \oplus-NFAs
Ambiguity: current status

What have we achieved?
- Shown patterns to form ambiguous behaviour in structure

What remains?
- Succinct examples for each ambiguity class
- Families of languages to show relationship between ambiguity classes
- As above, but between traditional NFAs and \oplus-NFAs
Ambiguity: current status

What have we achieved?
- Shown patterns to form ambiguous behaviour in structure

What remains?
- Succinct examples for each ambiguity class
- Families of languages to show relationship between ambiguity classes
- As above, but between traditional NFAs and \oplus-NFAs
Ambiguity: current status

What have we achieved?
- Shown patterns to form ambiguous behaviour in structure

What remains?
- Succinct examples for each ambiguity class
- Families of languages to show relationship between ambiguity classes
- As above, but between traditional NFAs and \oplus-NFAs
Questions?

Contact us
lvzijl@gmail.com
http://www.cs.sun.ac.za/lynnette